Citation: GU Ying, ZHUANG Gui-Lin, WANG JIAN-Guo. Tunable Band Gap of 2D Covalent Organic Framework by External Electric Field[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2587-2592. shu

Tunable Band Gap of 2D Covalent Organic Framework by External Electric Field

  • Corresponding author: ZHUANG Gui-Lin,  WANG JIAN-Guo, 
  • Received Date: 13 February 2012
    Available Online: 20 June 2012

    Fund Project: No.21101137)浙江省自然科学基金(No. R4110345)高校新世纪人才基金(No.NCET-10-0979)资助项目. (No. R4110345)高校新世纪人才基金(No.NCET-10-0979)

  • The effect of directional electric field on the band gap of NiPc-COF was studied based on Density Functional Theory (DFT) calculations. The results indicate that electric field along [100] can effectively affect the electronic structure of NiPc-COF and result in the band gap of 0.22 eV at the electric field (EF) of 3.09 V·nm-1. Furthermore, both electronic structure and frontier orbits, coupled with Mülliken charge population, reveal that the polarization of charge density along [100] direction leads to the split of some degenerate orbits resulting in the decrease of band gap.
  • 加载中
    1. [1]

      [1] Cóté A P, Benin A, Ockwig N, et al. Science, 2005,310: 1166-1170

    2. [2]

      [2] El-Kaderi H M, Hunt J R, Mendoza-Cortes J L, et al. Science, 2007,316:268-272

    3. [3]

      [3] Mendoza-Cortes J L, Han S S, Furukawa H, et al. J. Phys. Chem. A, 2010,114:10824-10833

    4. [4]

      [4] Lan J H, Cao D P, Wang W C. Langmuir, 2010,26:220-226

    5. [5]

      [5] Cao D P, Lan J H, Wang W C, et al. Angew. Chem. Int. Ed., 2009,48:4730-4733

    6. [6]

      [6] Wu M M, Wang Q, Sun Q, et al. J. Chem. Phys., 2010,133: 154706-154711

    7. [7]

      [7] Bassem A, Gotthard S. Microporous Mesoporous Mater., 2010, 133:59-65

    8. [8]

      [8] Klontzas E, Tylianakis E, Froudakis G E. J. Phys. Chem. C, 2009,113:21253-21257

    9. [9]

      [9] Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009,131: 8875-8883

    10. [10]

      [10] Srepusharawoot P, Scheicher R H, Araujo C M, et al. J. Phys. Chem. C, 2009,113:8498-8504

    11. [11]

      [11] Tylianakis E, Froudakis G E. J. Comput. Theor. Nanos., 2009,6:335-348

    12. [12]

      [12] Han S S, Furukawa H, Yaghi O M, et al. J. Am. Chem. Soc., 2008,130:11580-11581

    13. [13]

      [13] Garberoglio G. Langmuir, 2007,23:12154-12158

    14. [14]

      [14] Spitler E L, Dichtel W R. Nature Chem., 2010,2:672-677

    15. [15]

      [15] Colson J W, Woll A R, Mukherjee A, et al. Science, 2011,332:228-231

    16. [16]

      [16] Zwaneveld N A A, Pawlak R, Abel M. et al. J. Am. Chem. Soc., 2008,130:6678-6679

    17. [17]

      [17] Zhang Y G, Tan M X, Li H, et al. Chem. Commun., 2011,47:7365-7367

    18. [18]

      [18] Feng X, Chen L, Dong Y P, et al. Chem. Commun., 2011, 47:1979-1981

    19. [19]

      [19] Wan S, Guo J, Kim J B, et al. Angew. Chem. Int. Ed., 2009, 48:5439-5442

    20. [20]

      [20] Abel M, Clair S, Ourdjini O, et al. J. Am. Chem. Soc., 2011,133:1203-1205

    21. [21]

      [21] Ding X S, Chen L, Honsho Y, et al. J. Am. Chem. Soc., 2011,133:14510-14513

    22. [22]

      [22] Zhou J, Sun Q. J. Am. Chem. Soc., 2011,133:15113-15119

    23. [23]

      [23] Ao Z M, Peeters F M. J. Phys. Chem. C, 2010,114:14503-14509

    24. [24]

      [24] Zhou J, Wang Q, Sun Q, et al. Proc. Natl. Acad. Sci., 2010,107:2801-2806

    25. [25]

      [25] Alfieri G, Kimoto T. Appl. Phys. Lett., 2010,97:043108-043110

    26. [26]

      [26] Liu W, Jiang Q, J. Comput. Theor. Nanosci., 2010,7:2225-2261

    27. [27]

      [27] Zhou J, Wu M M, Zhou X, et al. Appl. Phys. Lett., 2009,95: 103108-103110

    28. [28]

      [28] He C, Zhang P, Zhu Y F, et al. J. Phys. Chem. C, 2008,112: 9045-9049

    29. [29]

      [29] Lü Y A, Zhuang G L, Wang J G, et al. Phys. Chem. Chem. Phys., 2011,13:12472-12477

    30. [30]

      [30] Ao Z M, Peeters F M. Appl. Phys. Lett., 2010,96:253106-253108

    31. [31]

      [31] Li Y W, Zhao J W, Yin X, et al. J. Phys. Chem. A., 2006, 110:11130-11135

    32. [32]

      [32] Li Y W, Yin G P, Yao J H, et al. Comp. Mater. Sci., 2008,42:638-642

    33. [33]

      [33] Li Y W, Zhao J W, Yin X, et al. Phys. Chem. Chem. Phys., 2007,9:1186-1193

    34. [34]

      [34] Li Y W, Yin Z L, Yao J H, et al. Chem. Lett., 2009,(38): 334-335

    35. [35]

      [35] Ding X S, Guo J, Feng X, et al. Angew. Chem. Int. Ed., 2011,50:1289-1293

    36. [36]

      [36] Delley B. J. Chem. Phys., 1990,92:508-517

    37. [37]

      [37] Delley B. J. Chem. Phys., 2000,113:7756-7764

    38. [38]

      [38] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996,77:3865-3868

    39. [39]

      [39] Hammer B, Hansen L B, Norskov J K. Phys. Rev. B, 1999, 59:7413-7421

    40. [40]

      [40] Monkhorst H J, Pack J D. Phys. Rev. B, 1976,13:5188-5192

    41. [41]

      [41] Liao M S, Scheiner S J. J. Chem. Phys., 2001,114:9780-9791

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(0)
  • Abstract views(450)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return