Citation: NIE Xiang, GUO Xiao-Dong, ZHONG Ben-He, LIU Heng, FANG Wei-Mao. Effect of Mn Source on 5 V LiNi0.5Mn1.5O4 Positive Electrode Materials Prepared by Combustion Method[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2573-2580. shu

Effect of Mn Source on 5 V LiNi0.5Mn1.5O4 Positive Electrode Materials Prepared by Combustion Method

  • Corresponding author: GUO Xiao-Dong, 
  • Received Date: 22 March 2012
    Available Online: 13 June 2012

    Fund Project: 国家科技支撑计划(No.2007BAQ01055) (No.2007BAQ01055)国家自然科学基金(No.50574063)以及四川大学青年基金(No.2011SCU11081)资助项目. (No.50574063)以及四川大学青年基金(No.2011SCU11081)

  • Sub-micrometric LiNi0.5Mn1.5O4 cathode materials were prepared by sucrose combustion method with two different Mn sources. The effect of manganese acetate and manganese nitrate on the crystal structure, morphology, particle size and electrical performance of the prepared samples was evaluated by X-ray diffraction (XRD),scanning electron microscopy (SEM), particle size analysis, cyclic voltammetry (CV),galvanostatic charge-discharge test and electrochemical impedance spectroscopy (EIS). XRD analysis shows that the structure of both samples is a typical cubic spinel with Fd3m space group. The particle size and the distribution of the LiNi0.5Mn1.5O4 powder are strongly influenced by Mn source. The materials prepared by manganese acetate have smaller particle size and narrower particle size distribution, which can facilitate Li ions extraction and insertion. Furthermore, the sample LiNi0.5Mn1.5O4 prepared by manganese acetate has better electrochemical performances. An initial specific capacity of 144.5 mAh·g-1 at 1C in the voltage range of 3.6~5.2 V, 96% of the initial capacity after 100 cycles is maintained, and capacities of 136.3, 132.0, 124.7 and 96.6 mAh·g-1 are achieved at the rate of 3C, 5C, 10C and 20C, respectively.
  • 
    1. [1]

      [1] Guo X D, Zhong B H, Liu H, et al. J. Electrochem. Soc., 2009,156:A787-A790

    2. [2]

      [2] TANG Yan(唐艳), ZHONG Ben-He(钟本和), GUO Xiao-Dong(郭孝东), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2011,27(4):869-874

    3. [3]

      [3] Wolfgang M, Jean-Francios C, Dietrich G, et al. Electrochimica Acta, 2010,55:4964-4969

    4. [4]

      [4] Liu G Q, Wen L, Liu Y M. J. Solid State Electrochem., 2010,14:2191-2202

    5. [5]

      [5] Chi L H, Dinh N N, Brutti S, et al. Electrochimica Acta., 2010,55:5110-5116

    6. [6]

      [6] Yi T F, Zhu Y R, Zhu R S. Solid State Ionics., 2008,179: 2132-2136

    7. [7]

      [7] Mohamed A, Jose M A, Rosa M, et al. J. Power Sources, 2008,185:501-511

    8. [8]

      [8] CHEN Zhao-Yong(陈召勇), XIAO Jing(肖劲), ZHU Hua-Li (朱华丽), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21(9):1417-1421

    9. [9]

      [9] Yang T Y, Sun K, Lei Z Y, et al. J. Alloys Compd., 2010, 502:215-219

    10. [10]

      [10] Liu H Y, Wu Y P, Rahm E, et al. J. Solid State Electrochem., 2004,8:450-466

    11. [11]

      [11] Chang Z R, Dai D M, Tang H W, et al. Electrochimica Acta, 2010,55:5506-5510

    12. [12]

      [12] DAI Ke-Hua(代克化), MAO Jing(毛景), ZHAI Yu-Chun (翟玉春). Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2010,26(8):2130-2134

    13. [13]

      [13] HE Ze-Qiang(何则强), XIONG Li-Zhi(熊利芝), WU Xian-Ming(吴显明), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23(5): 875-878

    14. [14]

      [14] Yang T Y, Sun K N, Lei Z Y, et al. J. Solid State Electrochem., 2011,15:391-397

    15. [15]

      [15] Feng X Y, Shen C, Fang X, et al. J. Alloys Compd.,2011, 509:3623-3626

    16. [16]

      [16] PANG Pei-Pei(庞佩佩), TANG Zhi-Yuan(唐致远), YUAN Xiu-Lan(袁秀兰). J. Chinese Battery Industry.(Dianchi Gongye),2010,15(3):160-164

    17. [17]

      [17] Fang X, Ding N, Feng X Y, et al. Electrocheimica Acta, 2009,54:7471-7475

    18. [18]

      [18] Yi T F, Shu J, Zhu Y R, et al. J. Phys. Chem. Solids, 2009,70:153-158

    1. [1]

      [1] Guo X D, Zhong B H, Liu H, et al. J. Electrochem. Soc., 2009,156:A787-A790

    2. [2]

      [2] TANG Yan(唐艳), ZHONG Ben-He(钟本和), GUO Xiao-Dong(郭孝东), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2011,27(4):869-874

    3. [3]

      [3] Wolfgang M, Jean-Francios C, Dietrich G, et al. Electrochimica Acta, 2010,55:4964-4969

    4. [4]

      [4] Liu G Q, Wen L, Liu Y M. J. Solid State Electrochem., 2010,14:2191-2202

    5. [5]

      [5] Chi L H, Dinh N N, Brutti S, et al. Electrochimica Acta., 2010,55:5110-5116

    6. [6]

      [6] Yi T F, Zhu Y R, Zhu R S. Solid State Ionics., 2008,179: 2132-2136

    7. [7]

      [7] Mohamed A, Jose M A, Rosa M, et al. J. Power Sources, 2008,185:501-511

    8. [8]

      [8] CHEN Zhao-Yong(陈召勇), XIAO Jing(肖劲), ZHU Hua-Li (朱华丽), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21(9):1417-1421

    9. [9]

      [9] Yang T Y, Sun K, Lei Z Y, et al. J. Alloys Compd., 2010, 502:215-219

    10. [10]

      [10] Liu H Y, Wu Y P, Rahm E, et al. J. Solid State Electrochem., 2004,8:450-466

    11. [11]

      [11] Chang Z R, Dai D M, Tang H W, et al. Electrochimica Acta, 2010,55:5506-5510

    12. [12]

      [12] DAI Ke-Hua(代克化), MAO Jing(毛景), ZHAI Yu-Chun (翟玉春). Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2010,26(8):2130-2134

    13. [13]

      [13] HE Ze-Qiang(何则强), XIONG Li-Zhi(熊利芝), WU Xian-Ming(吴显明), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23(5): 875-878

    14. [14]

      [14] Yang T Y, Sun K N, Lei Z Y, et al. J. Solid State Electrochem., 2011,15:391-397

    15. [15]

      [15] Feng X Y, Shen C, Fang X, et al. J. Alloys Compd.,2011, 509:3623-3626

    16. [16]

      [16] PANG Pei-Pei(庞佩佩), TANG Zhi-Yuan(唐致远), YUAN Xiu-Lan(袁秀兰). J. Chinese Battery Industry.(Dianchi Gongye),2010,15(3):160-164

    17. [17]

      [17] Fang X, Ding N, Feng X Y, et al. Electrocheimica Acta, 2009,54:7471-7475

    18. [18]

      [18] Yi T F, Shu J, Zhu Y R, et al. J. Phys. Chem. Solids, 2009,70:153-158

  • 加载中
    1. [1]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    5. [5]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    8. [8]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    12. [12]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    13. [13]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    14. [14]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    15. [15]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    16. [16]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    19. [19]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    20. [20]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

Metrics
  • PDF Downloads(0)
  • Abstract views(259)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return