Citation: YE Jian, ZHANG Hai-Yan, CHEN Yi-Ming, HU Li, RAN Qi-Yan, DU Lei. Preparation of Graphene by Ball Milling-Assisted Oxidization-Reduction Method[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2523-2529.
-
Graphite oxide (GO) was prepared from natural graphite by a modified Hummers method. GO was firstly ball milled for 10 h and then exfoliated into graphene oxide by ultrasonication. Finally, graphene was prepared by magnetic mixing reflux method using hydrazine monohydrate as reductant. Graphene is characterized by SEM, AFM, XRD, Raman, FTIR, TEM measurements. The surface morphology and structure of graphene sheets which are prepared by low-energy ball milling assisted oxidization-reduction method and oxidization-reduction method without ball milling are compared and analyzed. The results show that ball milling contributes to the thinning and exfoliation of GO. Otherwise, low-energy ball milling can promote the reduction degree of GO, shorten the reflux reaction time and improve the efficiency of graphene preparation.
-
-
[1]
[1] Soldano C, Mahmood A, Dujardin E. Carbon, 2010,48(8):2127-2150
-
[2]
[2] Blake P, Brimicombe P D, Nair R R, et al. J. Nano Lett., 2008,8:1704-1708
-
[3]
[3] Prasher R. Science, 2010,328(5975):185-186.
-
[4]
[4] Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004,306:666-669
-
[5]
[5] Stankovich S, Dikin D A, Piner R D, et al. Carbon, 2007,45 (7):1558-1565
-
[6]
[6] Stoller M D, Park S, Zhu Y W, et al. Nano Lett., 2008,8(10): 3498-3502
-
[7]
[7] Kim K S, Zhao Y, Jang H, et al. Nature, 2009,475:706-710
-
[8]
[8] Liu W, Chung C H, Miao C Q, et al. Thin Solid Films, 2010, 518:S128-S132
-
[9]
[9] Park H J, Meyer J, Roth S, et al. Carbon, 2010,48:1088-1094
-
[10]
[10] Reina A, Thiele S, Kong J, et al. Nano Res., 2009,2:509-516
-
[11]
[11] Cai W W, Zhu Y W, Ruoff R S, et al. Appl. Phys. Lett., 2009,95:123115
-
[12]
[12] Reina A, Jia X T, Kong J, et al. Nano Lett., 2009,9(1):30-35
-
[13]
[13] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Carbon, 2009,46:3242-3246
-
[14]
[14] Subrahmanyam K S, Panchakarla L S, Govindaraj A, et al. J. Phys. Chem., 2009,113(11):4257-4259
-
[15]
[15] LV Yan(吕岩), WANG Zhi-Yong(王志永), ZHANG Hao(张 浩), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2010,25 (7):725-728
-
[16]
[16] Wu Z S, Ren W C, Gao L B, et al. ACS Nano, 2009,3(2): 411-417
-
[17]
[17] Berger C, Song Z M, Li X B, et al. Science, 2006,312(5777): 1191-1196
-
[18]
[18] Berger C, Song Z, Li T, et al. J. Phys. Chem., 2004,108(52): 19912-19916
-
[19]
[19] Sutter P W, Flege J I, Sutter E A, et al. Nat. Mater., 2008,7 (5):406-411
-
[20]
[20] McAllister M J, Li J L, Adamson D H, et al. Chem. Mater., 2007,19:4396-4404
-
[21]
[21] Schniepp H C, Li J L, McAllister M J, et al. J. Phys. Chem. B, 2006,110:8535-8539
-
[22]
[22] Lü W, Tang D M, He Y B, et al. ACS Nano, 2009,3(11): 3730-3736
-
[23]
[23] Ye J, Zhang H Y, Hu L, et al. J. Power Source, 2012,212: 105-110
-
[24]
[24] Zhu Y W, Murali S, Stoller M D, et al. Carbon, 2010,48(7): 2118-2122
-
[25]
[25] ZOU Zheng-Guang(邹正光), YU Hui-Jiang(俞惠江), LONG Fei(龙飞), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(9):1753-1757
-
[26]
[26] Chen Y, Zhang X, Zhang D C, et al. Carbon, 2011,49:573-580
-
[27]
[27] Liu C G, Yu Z N, Neff D, et al. Nano Lett., 2010,10(12): 4863-4868
-
[28]
[28] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958,80 (6):1339-1339
-
[29]
[29] Li L H, Chen Y, Behan G, et al. J. Mater. Chem., 2011,21: 11862
-
[30]
[30] Geim A K, Novoselov K S. Nat. Mater., 2007,6:183-191
-
[31]
[31] Tuinstra F, Koenig J L. J. Chem. Phys., 1970,53(3):1126-1130
-
[32]
[32] Ferrari A C, Meyer, J C, Novoselov K S, et al. Phys. Rev. Lett., 2006,97:187401
-
[33]
[33] Kudin K N, Ozbas B, Schniepp H C, et al. Nano Lett., 2008,8(1):36-41
-
[34]
[34] Kaniyoor A, Baby T T, Ramaprabhu S. J. Mater. Chem., 2010,20:8467-8469
-
[35]
[35] Jeong H K, Colakerol L, Jin M H, et al. J. Chem. Phys. Lett., 2008,460:499-502
-
[1]
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[3]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[4]
Zhangshu Wang , Xin Zhang , Jixin Han , Xuebing Fang , Xiufeng Zhao , Zeyu Gu , Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056
-
[5]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[6]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[7]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[8]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[9]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[10]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[11]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[12]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[13]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[14]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[15]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[16]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[17]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[18]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[19]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[20]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(445)
- HTML views(57)