Citation: YE Jian, ZHANG Hai-Yan, CHEN Yi-Ming, HU Li, RAN Qi-Yan, DU Lei. Preparation of Graphene by Ball Milling-Assisted Oxidization-Reduction Method[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2523-2529. shu

Preparation of Graphene by Ball Milling-Assisted Oxidization-Reduction Method

  • Corresponding author: ZHANG Hai-Yan, 
  • Received Date: 9 May 2012
    Available Online: 11 June 2012

    Fund Project: 国家自然科学基金(No.20971027)资助项目. (No.20971027)

  • Graphite oxide (GO) was prepared from natural graphite by a modified Hummers method. GO was firstly ball milled for 10 h and then exfoliated into graphene oxide by ultrasonication. Finally, graphene was prepared by magnetic mixing reflux method using hydrazine monohydrate as reductant. Graphene is characterized by SEM, AFM, XRD, Raman, FTIR, TEM measurements. The surface morphology and structure of graphene sheets which are prepared by low-energy ball milling assisted oxidization-reduction method and oxidization-reduction method without ball milling are compared and analyzed. The results show that ball milling contributes to the thinning and exfoliation of GO. Otherwise, low-energy ball milling can promote the reduction degree of GO, shorten the reflux reaction time and improve the efficiency of graphene preparation.
  • 加载中
    1. [1]

      [1] Soldano C, Mahmood A, Dujardin E. Carbon, 2010,48(8):2127-2150

    2. [2]

      [2] Blake P, Brimicombe P D, Nair R R, et al. J. Nano Lett., 2008,8:1704-1708

    3. [3]

      [3] Prasher R. Science, 2010,328(5975):185-186.

    4. [4]

      [4] Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004,306:666-669

    5. [5]

      [5] Stankovich S, Dikin D A, Piner R D, et al. Carbon, 2007,45 (7):1558-1565

    6. [6]

      [6] Stoller M D, Park S, Zhu Y W, et al. Nano Lett., 2008,8(10): 3498-3502

    7. [7]

      [7] Kim K S, Zhao Y, Jang H, et al. Nature, 2009,475:706-710

    8. [8]

      [8] Liu W, Chung C H, Miao C Q, et al. Thin Solid Films, 2010, 518:S128-S132

    9. [9]

      [9] Park H J, Meyer J, Roth S, et al. Carbon, 2010,48:1088-1094

    10. [10]

      [10] Reina A, Thiele S, Kong J, et al. Nano Res., 2009,2:509-516

    11. [11]

      [11] Cai W W, Zhu Y W, Ruoff R S, et al. Appl. Phys. Lett., 2009,95:123115

    12. [12]

      [12] Reina A, Jia X T, Kong J, et al. Nano Lett., 2009,9(1):30-35

    13. [13]

      [13] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Carbon, 2009,46:3242-3246

    14. [14]

      [14] Subrahmanyam K S, Panchakarla L S, Govindaraj A, et al. J. Phys. Chem., 2009,113(11):4257-4259

    15. [15]

      [15] LV Yan(吕岩), WANG Zhi-Yong(王志永), ZHANG Hao(张 浩), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2010,25 (7):725-728

    16. [16]

      [16] Wu Z S, Ren W C, Gao L B, et al. ACS Nano, 2009,3(2): 411-417

    17. [17]

      [17] Berger C, Song Z M, Li X B, et al. Science, 2006,312(5777): 1191-1196

    18. [18]

      [18] Berger C, Song Z, Li T, et al. J. Phys. Chem., 2004,108(52): 19912-19916

    19. [19]

      [19] Sutter P W, Flege J I, Sutter E A, et al. Nat. Mater., 2008,7 (5):406-411

    20. [20]

      [20] McAllister M J, Li J L, Adamson D H, et al. Chem. Mater., 2007,19:4396-4404

    21. [21]

      [21] Schniepp H C, Li J L, McAllister M J, et al. J. Phys. Chem. B, 2006,110:8535-8539

    22. [22]

      [22] Lü W, Tang D M, He Y B, et al. ACS Nano, 2009,3(11): 3730-3736

    23. [23]

      [23] Ye J, Zhang H Y, Hu L, et al. J. Power Source, 2012,212: 105-110

    24. [24]

      [24] Zhu Y W, Murali S, Stoller M D, et al. Carbon, 2010,48(7): 2118-2122

    25. [25]

      [25] ZOU Zheng-Guang(邹正光), YU Hui-Jiang(俞惠江), LONG Fei(龙飞), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(9):1753-1757

    26. [26]

      [26] Chen Y, Zhang X, Zhang D C, et al. Carbon, 2011,49:573-580

    27. [27]

      [27] Liu C G, Yu Z N, Neff D, et al. Nano Lett., 2010,10(12): 4863-4868

    28. [28]

      [28] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958,80 (6):1339-1339

    29. [29]

      [29] Li L H, Chen Y, Behan G, et al. J. Mater. Chem., 2011,21: 11862

    30. [30]

      [30] Geim A K, Novoselov K S. Nat. Mater., 2007,6:183-191

    31. [31]

      [31] Tuinstra F, Koenig J L. J. Chem. Phys., 1970,53(3):1126-1130

    32. [32]

      [32] Ferrari A C, Meyer, J C, Novoselov K S, et al. Phys. Rev. Lett., 2006,97:187401

    33. [33]

      [33] Kudin K N, Ozbas B, Schniepp H C, et al. Nano Lett., 2008,8(1):36-41

    34. [34]

      [34] Kaniyoor A, Baby T T, Ramaprabhu S. J. Mater. Chem., 2010,20:8467-8469

    35. [35]

      [35] Jeong H K, Colakerol L, Jin M H, et al. J. Chem. Phys. Lett., 2008,460:499-502

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    5. [5]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    6. [6]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    7. [7]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    10. [10]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    11. [11]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    12. [12]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    17. [17]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    18. [18]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    19. [19]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    20. [20]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

Metrics
  • PDF Downloads(0)
  • Abstract views(693)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return