Citation: ZHANG Qian, HE Shi-Ci, LIU Wei-Wei, FANG Guo-Qing, KANEKO Shingo, YANG Yu-Sheng, ZHENG Jun-Wei, LI De-Cheng. Preparation, Structure and Electrochemical Properties of Li1.2Mn0.4+xNixCr0.4-2xO2 by Spray-Dry Process[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2501-2507. shu

Preparation, Structure and Electrochemical Properties of Li1.2Mn0.4+xNixCr0.4-2xO2 by Spray-Dry Process

  • Corresponding author: LI De-Cheng, 
  • Received Date: 19 April 2012
    Available Online: 18 May 2012

    Fund Project: 国家自然科学基金(No.20973200)资助项目. (No.20973200)

  • Li1.2Mn0.4+xNixCr0.4-2xO2 (x=0, 0.05, 0.10, 0.15, 0.20) were synthesized by spray-drying process, which was named as SD1 to SD5, respectively. Their crystal structures, element valences and the electrochemical performances were investigated by XRD, XPS, ICP, SEM and TEM. All compounds have a typical feature of a Li-rich layered solid solution material in terms of their crystal structures, and the valences of Ni and Mn are 2.5+ and 4+, respectively. As to the valence of Cr, both +3 and +6 co-exist in the samples from SD1 to SD4. Moreover, the present of amorphous Li2CrO4 gives rise to the strong hygroscopicity, which should be closed related to the poor electrochemical properties. Sample with water-washed treatment could effectively remove the amorphous Li2CrO4, and consequently improved its electrochemical properties. The washed SD4 has a reversible capacity of 237 mA·h·g-1 and the capacity retention is about 99%, when the cell was operated at 50 ℃ in the range of 4.8~2.0 V. If it was operated in the range of 5.0~2.0 V at 50 ℃, the initial discharge capacity increases to 307 mA·h·g-1.
  • 加载中
    1. [1]

      [1] Mizushima K, Jones P, Wiseman P, et al. Mater. Res. Bull., 1980,15:783-798

    2. [2]

      [2] Ozawa K. Solid State Ionics, 1994,69:212-221

    3. [3]

      [3] Ohzuku T, Ueda A, Nagayama M, et al. Electrochim. Acta, 1993,38:1159-1167

    4. [4]

      [4] Aurbach D, Markovsky B, Rodkin A, et al. Electrochim. Acta, 2002,47:4291-4306

    5. [5]

      [5] Ito A, Li D, Ohsawa Y, et al. J. Power Sources, 2008,183: 344-346

    6. [6]

      [6] Zhang L, Li D, Wang X, et al. Mater. Lett., 2005,59:2693-2697

    7. [7]

      [7] Tang W, Kanoh H, Yang X, et al. Chem. Mater., 2000,12: 3271-3279

    8. [8]

      [8] Xiang H, Wang H, Chen C, et al. J. Power Sources, 2009, 191:575-581

    9. [9]

      [9] DU Ke(杜柯), ZHAO Jun-Feng(赵军锋), WANG Wei-Gang (王伟刚), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(1):74-80

    10. [10]

      [10] Hernan L, Macias M, Morales J, et al. Mater. Rese. Bull., 1989,24:781-787

    11. [11]

      [11] Komaba S, Takei C, Nakayama T, et al. Electrochem. Commun., 2010,12:355-358

    12. [12]

      [12] Feng G, Li L, Liu J, et al. Mater. Chem., 2009,19:2993-2998

    13. [13]

      [13] ZHENG Zi-Shan(郑子山), TANG Zi-Long(唐子龙), ZHANG Zhong-Tai(张中太), et al. Chin. J. Ceram. Soc.(Guisuanyan Xuebao), 2001,29(6):554-558

    14. [14]

      [14] Ammundsen B, Paulsen J, Davidson I, et al. J. Electrochem. Soc., 2002,149:A431-A436

    15. [15]

      [15] Park C, Kim S, Nahm K, et al. J. Alloys Compd., 2008,449: 343-348

    16. [16]

      [16] Galakhov V, Kurmaev E, Uhlenbrock S, et al. Solid State Commun., 1995,95:347-351

    17. [17]

      [17] CHEN Hong(陈红), XU Chun-Yan(徐春艳), WEI Ying-Jin (魏英进), et al. Chin. J. Jilin Univ.: Sci. Ed.(Jilin Daxue Xuebao: Lixueban), 2009,47(4):823-826

    18. [18]

      [18] Robertson A, Bruce P. Chem. Mater., 2003,15:1984-1992

    19. [19]

      [19] Santhanam R, Rambabu B. Int. J. Electrochem. Sci., 2009, 4:1770-1778

    20. [20]

      [20] Kosova N, Devyatkina E, Kaichev V. J. Power Sources, 2007, 174:965-969

    21. [21]

      [21] Ammundsen B, Paulsen J. Adv. Mater., 2001,13:943-956

    22. [22]

      [22] Park C, Kim J. Chem. Lett., 2006,35:886-887

    23. [23]

      [23] Nesbitt H, Banerjee D. Am. Mineral., 1998,83:305-315

    24. [24]

      [24] Kageyama M, Li D, Kobayakawa K, et al. J. Power Sources, 2006,157:494-500

    25. [25]

      [25] Hyodo T, Hayashi M, Mitsutake S, et al. J. Ceram. Soc. Japn., 1997,105:412-417

    26. [26]

      [26] Park C, Kim S, Mangani I, et al. Mater. Res. Bull., 2007, 42:1374-1383

    27. [27]

      [27] ZHANG Jin(张进), CAO Gao-Shao(曹高劭), ZHAO Xin-Bing(赵新兵), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2008,24(3):415-421

  • 加载中
    1. [1]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    15. [15]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    16. [16]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    17. [17]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    18. [18]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    19. [19]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(0)
  • Abstract views(347)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return