Citation: Huang Hao, Lin Huaxin, Wang Min, Liao Jian. Copper-Catalyzed Enantioselective Aminoboration of Styrenes with 1, 2-Benzisoxazole as Nitrogen Source[J]. Acta Chimica Sinica, ;2020, 78(11): 1229-1234. doi: 10.6023/A20090424 shu

Copper-Catalyzed Enantioselective Aminoboration of Styrenes with 1, 2-Benzisoxazole as Nitrogen Source

  • Corresponding author: Liao Jian, jliao@cib.ac.cn
  • Received Date: 14 September 2020
    Available Online: 28 October 2020

    Fund Project: the Biological Resources Programme, Chinese Academy of Sciences KFJ-BRP-008the National Nature Science Foundation of China 21871251Project supported by the National Nature Science Foundation of China (No. 21871251) and the Biological Resources Programme, Chinese Academy of Sciences (No. KFJ-BRP-008)

Figures(4)

  • Organoboron compounds are important intermediates in organic synthesis because of their high utilities for C—C and C—X bond formations. Transition metal-catalyzed borylative difunctionalization of alkenes, which can simultaneously introduce C—B, C—C or C—X bonds, could directly construct highly functionalized organoboron in one step. Among these reactions, copper catalyzed enantioselective aminoboration of styrenes is an efficient approach to generate enantioriched β-aminoboronate which is a class of useful chiral compounds. In this work, employing styrenes as substrates, 1, 2-benzisoxazole as an electrophilic primary amine source, bis(pinacolato)diboron (B2pin2) as boron source and LiOCH3 as base, an enantioselective Cu-catalyzed aminoboration of styrenes by using a chiral sulfoxide-phosphine (SOP) ligand was developed, and a board range of chiral β-aminoalkylboranes, which could be readily converted to a class of valuable β-hydroxylalkylamines, were accessed with high yields and ee values. A general procedure for this aminoboration of styrenes is described in the following: in a glove box, CuI (0.05 mmol), chiral sulfoxide phosphine ligand L1 (0.06 mmol), and 2 mL of anhydrous tetrahydrofuran were added into a flame-dried tube. The resulting mixture was stirred at room temperature for 30 min. Then bis(pinacolato)diboron (B2pin2) (0.75 mmol), LiOCH3 (1.25 mmol), styrene 1 (0.5 mmol), 1, 2-benzisoxazole (0.75 mmol) and another 2 mL of THF were added into the reaction system in sequence. The reaction tube was removed out from the glove box and stirred at 20 ℃ for 12 h. After the reaction was finished, the NMR yield was firstly determined with dimethyl terephthalate (9.7 mg, 0.05 mmol) as internal standard, then, the crude product was recovered and purified with a preparative TLC which was alkalized with triethylamine to give the desired β-aminoboronates in moderate to good yields (47%~84%) and enantioselectivities (81%~99%). To demonstrate the utility of this reaction, β-boronate primary amine could be easily obtained by removing the Schiff base group of β-aminoboronate 3 under the methanol solution of hydroxylamine hydrochloride, which could be further oxidized to give corresponding chiral β-amino alcohol in moderate yield (48%).
  • 加载中
    1. [1]

    2. [2]

      (a) Gorovoy, A. S.; Gozhina, O.; Svendsen, J.-S.; Tetz, G. V.; Domorad, A.; Tetz, V. V.; Lejon, T. J. Pept. Sci. 2013, 19, 613. (b) Gorovoy, A. S.; Gozhina, O. V.; Svendsen, J. S.; Domorad, A. A.; Tetz, G. V.; Tetz, V. V.; Lejon, T. Chem. Biol. Drug Des. 2013, 81, 408.

    3. [3]

      (a) Solé, G.; Gulyás, H.; Fernández, E. Chem. Commun. 2012, 48, 3769. (b) He, Z. T.; Zhao, Y. S.; Tian, P.; Wang, C. C.; Dong, H. Q.; Lin, G. Q. Org. Lett. 2014, 16, 1426. (c) Takeda, Y.; Kuroda, A.; Sameera, W. M. C.; Morokuma, K.; Minakata, S. Chem. Sci. 2016, 7, 6141. (d) Park, J.; Lee, Y.; Kim, J.; Cho, S. H. Org. Lett. 2016, 18, 1210. (e) Kim, J.; Ko, K.; Cho, S. H. Angew. Chem., Int. Ed. 2017, 56, 11584. (f) Li, X.; Hall, D. G. Angew. Chem., Int. Ed. 2018, 57, 10304. (g) Kim, J.; Hwang, C.; Kim, Y.; Cho, S. H. Org. Process Res. Dev. 2019, 23, 1663. (h) Kim, J.; Shin, M.; Cho, S. H. ACS Catal. 2019, 9, 8503. (i) Li, X.; Hall, D. G. J. Am. Chem. Soc. 2020, 142, 9063.

    4. [4]

    5. [5]

      (a) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2013, 135, 4934. (b) Sakae, R.; Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 1228. (c) Parra, A.; Amenos, L.; Guisan-Ceinos, M.; Lopez, A.; Garcia Ruano, J. L.; Tortosa, M. J. Am. Chem. Soc. 2014, 136, 15833. (d) Sakae, R.; Hirano, K.; Miura, M. J. Am. Chem. Soc. 2015, 137, 6460. (e) Sakae, R.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2015, 54, 613. (f) Kato, K.; Hirano, K.; Miura, M. Angew. Chem., Int. Ed. 2016, 55, 14400. (g) Nishikawa, D.; Hirano, K.; Miura, M. Org. Lett. 2016, 18, 4856. (h) Jiang, H. C.; Tang, X. Y.; Shi, M. Chem. Commun. 2016, 52, 5273. (i) Huo, J.; Xue, Y.; Wang, J. Chem. Commun. 2018, 54, 12266. (j) Kato, K.; Hirano, K.; Miura, M. Chem. Eur. J. 2018, 24, 5775.

    6. [6]

      (a) Guo, S.; Yang, J. C.; Buchwald, S. L. J. Am. Chem. Soc. 2018, 140, 15976. (b) Feng, S.; Hao, H.; Liu, P.; Buchwald, S. L. ACS Catal. 2019, 10, 282. (c) Guo, S.; Zhu, J.; Buchwald, S. L. Angew. Chem., Int. Ed. 2020, 59, 20841.

    7. [7]

      (a) Casey, M. L.; Kemp, D. S.; Paul, K. G.; Cox, D. J. Org. Chem. 1973, 38, 2294.

    8. [8]

    9. [9]

      (a) Noshita, M.; Shimizu, Y.; Morimoto, H.; Ohshima, T. Org. Lett. 2016, 18, 6062.

    10. [10]

      (a) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Organometallics 2006, 25, 2405. (b) Jiang, L.; Cao, P.; Wang, M.; Chen, B.; Wang, B.; Liao, J. Angew. Chem., Int. Ed. 2016, 55, 13854. (c) Tobisch, S. Chem. Eur. J. 2017, 23, 17800.

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(4)
  • Abstract views(630)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return