Citation: Lin Zu-Jin, Cao Rong. Porous Hydrogen-bonded Organic Frameworks (HOFs): Status and Challenges[J]. Acta Chimica Sinica, ;2020, 78(12): 1309-1335. doi: 10.6023/A20080359 shu

Porous Hydrogen-bonded Organic Frameworks (HOFs): Status and Challenges

  • Corresponding author: Lin Zu-Jin, linzujin@fafu.edu.cn Cao Rong, rcao@fjirsm.ac.cn
  • Received Date: 12 August 2020
    Available Online: 3 September 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21520102001), Natural Science Foundation of Fujian Province of China (No. 2020J01549), and Fujian Agriculture and Forestry University (Nos. 118360020, XJQ201616)Natural Science Foundation of Fujian Province of China 2020J01549Fujian Agriculture and Forestry University 118360020Fujian Agriculture and Forestry University XJQ201616the National Natural Science Foundation of China 21520102001

Figures(31)

  • Hydrogen-bonded organic frameworks (HOFs), usually self-assembled by organic or metal-organic building blocks via intermolecular H-bonding interactions, have become a unique type of crystalline porous material. Although the weak and flexible nature of hydrogen bonds makes most HOFs fragile, the high stability and permanent porosity could be realized by the judicious selection of rigid building blocks with special spatial configuration as well as the introduction of framework interpenetration and/or other intermolecular interactions like π-π stacking and electrostatic interactions, etc. Compared with other crystalline porous materials like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), HOFs feature mild preparation condition, high crystallinity, permissible solution processability, easy healing and regeneration, etc. These distinguishing merits make HOFs capable to be used as unique multifunctional porous materials. Herein, we first review the basic rules to design and synthesize stable and porous HOFs, and then systematically summarize the representative supramolecular synthons and backbones that have been used to build stable and porous HOFs. Emphasis is put on the potential applications of HOFs in gas adsorption and separation, proton conduction, heterogeneous catalysis, luminescence and sensing, biological applications, enantiomeric resolution and aromatic compounds separation, pollutants removal, and structure determination, etc.
  • 加载中
    1. [1]

      Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703.

    2. [2]

      Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chin. J. Chem. 2020, 38, 509.

    3. [3]

      Kitagawa, S.; Kitaura, R.; Noro, S.-i. Angew. Chem. Int. Ed. 2004, 43, 2334.

    4. [4]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.

    5. [5]

      Lv, H.; Sa, R.; Li, P.; Yuan, D.; Wang, X.; Wang, R. Sci. China Chem. 2020, 63, 1289.

    6. [6]

      He, Y.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2011, 133, 14570.

    7. [7]

      Lin, Z.-J.; Lü, J.; Hong, M.; Cao, R. Chem. Soc. Rev. 2014, 43, 5867.

    8. [8]

      Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1989, 111, 5962.

    9. [9]

      Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1990, 112, 1546.

    10. [10]

      Li, H.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 8571.

    11. [11]

      Kondo, M.; Yoshitomi, T.; Matsuzaka, H.; Kitagawa, S.; Seki, K. Angew. Chem. Int. Ed. 1997, 36, 1725.

    12. [12]

      Kim, J.; Chen, B.; Reineke, T. M.; Li, H.; Eddaoudi, M.; Moler, D. B.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2001, 123, 8239.

    13. [13]

      Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319.

    14. [14]

      Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2005, 38, 176.

    15. [15]

      O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc. Chem. Res. 2008, 41, 1782.

    16. [16]

      O’Keeffe, M. Chem. Soc. Rev. 2009, 38, 1215.

    17. [17]

      Zeng, Y.-N.; Zheng, H.-Q.; Gu, J.-F.; Cao, G.-J.; Zhuang, W.-E.; Lin, J.-D.; Cao, R.; Lin, Z.-J. Inorg. Chem. 2019, 58, 13360.

    18. [18]

      Zeng, Y.-N.; Zheng, H.-Q.; He, X.-H.; Cao, G.-J.; Wang, B.; Wu, K.; Lin, Z.-J. Dalton Trans. 2020, 49, 9680.

    19. [19]

      Zheng, H.-Q.; Liu, C.-Y.; Zeng, X.-Y.; Chen, J.; Lü, J.; Lin, R.-G.; Cao, R.; Lin, Z.-J.; Su, J.-W. Inorg. Chem. 2018, 57, 9096.

    20. [20]

      Wang, Z.; Zhang, S.; Chen, Y.; Zhang, Z.; Ma, S. Chem. Soc. Rev. 2020, 49, 708.

    21. [21]

      Liu, J. G.; Zhang, M. Y.; Wang, N.; Wang, C. G.; Ma, L. L. Acta Chim. Sinica 2020, 78, 311 (in Chinese).

    22. [22]

      Peng, Z. K.; Ding, H. M.; Chen, R. F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681 (in Chinese).

    23. [23]

      Luo, J.; Wang, J.-W.; Zhang, J.-H.; Lai, S.; Zhong, D.-C. CrystEngComm 2018, 20, 5884.

    24. [24]

      Hisaki, I.; Xin, C.; Takahashi, K.; Nakamura, T. Angew. Chem. Int. Ed. 2019, 58, 11160.

    25. [25]

      Lin, R.-B.; He, Y.; Li, P.; Wang, H.; Zhou, W.; Chen, B. Chem. Soc. Rev. 2019, 48, 1362.

    26. [26]

      Yang, J.; Wang, J.; Hou, B.; Huang, X.; Wang, T.; Bao, Y.; Hao, H. Chem. Eng. J. 2020, 399, 125873.

    27. [27]

      Wang, B.; Lin, R.-B.; Zhang, Z.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2020, 14399.

    28. [28]

      Lü, J.; Cao, R. Angew. Chem. Int. Ed. 2016, 55, 9474.

    29. [29]

      Duchamp, D. J.; Marsh, R. E. Acta Crystallogr. B 1969, 25, 5.

    30. [30]

      Simard, M.; Su, D.; Wuest, J. D. J. Am. Chem. Soc. 1991, 113, 4696.

    31. [31]

      Wang, X.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1994, 116, 12119.

    32. [32]

      Yang, W.; Greenaway, A.; Lin, X.; Matsuda, R.; Blake, A. J.; Wilson, C.; Lewis, W.; Hubberstey, P.; Kitagawa, S.; Champness, N. R.; Schrder, M. J. Am. Chem. Soc. 2010, 132, 14457.

    33. [33]

      Hu, Y.-X.; Li, W.-J.; Jia, P.-P.; Wang, X.-Q.; Xu, L.; Yang, H.-B. Adv. Opt. Mater. 2020, 8, 2000265.

    34. [34]

      Hu, F.; Liu, C.; Wu, M.; Pang, J.; Jiang, F.; Yuan, D.; Hong, M. Angew. Chem. Int. Ed. 2017, 56, 2101.

    35. [35]

      Huang, Q.; Li, W.; Mao, Z.; Qu, L.; Li, Y.; Zhang, H.; Yu, T.; Yang, Z.; Zhao, J.; Zhang, Y.; Aldred, M. P.; Chi, Z. Nat. Commun. 2019, 10, 3074.

    36. [36]

      Li, Y.-L.; Alexandrov, E. V.; Yin, Q.; Li, L.; Fang, Z.-B.; Yuan, W.; Proserpio, D. M.; Liu, T.-F. J. Am. Chem. Soc. 2020, 142, 7218.

    37. [37]

      Pulido, A.; Chen, L.; Kaczorowski, T.; Holden, D.; Little, M. A.; Chong, S. Y.; Slater, B. J.; McMahon, D. P.; Bonillo, B.; Stackhouse, C. J.; Stephenson, A.; Kane, C. M.; Clowes, R.; Hasell, T.; Cooper, A. I.; Day, G. M. Nature 2017, 543, 657.

    38. [38]

      Cui, P.; McMahon, D. P.; Spackman, P. R.; Alston, B. M.; Little, M. A.; Day, G. M.; Cooper, A. I. Chem. Sci. 2019, 10, 9988.

    39. [39]

      Cui, P.; Svensson Grape, E.; Spackman, P. R.; Wu, Y.; Clowes, R.; Day, G. M.; Inge, A. K.; Little, M. A.; Cooper, A. I. J. Am. Chem. Soc. 2020, 12743.

    40. [40]

      Desiraju, G. R. Angew. Chem. Int. Ed. 1995, 34, 2311.

    41. [41]

      Herbstein, F. H.; Kapon, M.; Reisner, G. M. J. Incl. Phenom. 1987, 5, 211.

    42. [42]

      Zentner, C. A.; Lai, H. W. H.; Greenfield, J. T.; Wiscons, R. A.; Zeller, M.; Campana, C. F.; Talu, O.; FitzGerald, S. A.; Rowsell, J. L. C. Chem. Commun. 2015, 51, 11642.

    43. [43]

      Nandi, S.; Chakraborty, D.; Vaidhyanathan, R. Chem. Commun. 2016, 52, 7249.

    44. [44]

      Yang, W.; Wang, J.; Wang, H.; Bao, Z.; Zhao, J. C.-G.; Chen, B. Cryst. Growth Des. 2017, 17, 6132.

    45. [45]

      Lai, H. W. H.; Wiscons, R. A.; Zentner, C. A.; Zeller, M.; Rowsell, J. L. C. Cryst. Growth Des. 2016, 16, 821.

    46. [46]

      Yang, W.; Zhou, W.; Chen, B. Cryst. Growth Des. 2019, 19, 5184.

    47. [47]

      Yin, Q.; Zhao, P.; Sa, R. J.; Chen, G. C.; Lu, J.; Liu, T. F.; Cao, R. Angew. Chem. Int. Ed. 2018, 57, 7691.

    48. [48]

      Wang, B.; Lv, X.-L.; Lv, J.; Ma, L.; Lin, R.-B.; Cui, H.; Zhang, J.; Zhang, Z.; Xiang, S.; Chen, B. Chem. Commun. 2020, 56, 66.

    49. [49]

      Ma, K.; Li, P.; Xin, J. H.; Chen, Y.; Chen, Z.; Goswami, S.; Liu, X.; Kato, S.; Chen, H.; Zhang, X.; Bai, J.; Wasson, M. C.; Maldonado, R. R.; Snurr, R. Q.; Farha, O. K. Cell Reports Physical Science 2020, 1, 100024.

    50. [50]

      Hisaki, I.; Nakagawa, S.; Tohnai, N.; Miyata, M. Angew. Chem. Int. Ed. 2015, 54, 3008.

    51. [51]

      Hisaki, I.; Ikenaka, N.; Tohnai, N.; Miyata, M. Chem. Commun. 2016, 52, 300.

    52. [52]

      Hisaki, I.; Nakagawa, S.; Ikenaka, N.; Imamura, Y.; Katouda, M.; Tashiro, M.; Tsuchida, H.; Ogoshi, T.; Sato, H.; Tohnai, N.; Miyata, M. J. Am. Chem. Soc. 2016, 138, 6617.

    53. [53]

      Hisaki, I.; Nakagawa, S.; Sato, H.; Tohnai, N. Chem. Commun. 2016, 52, 9781.

    54. [54]

      Hisaki, I.; Ikenaka, N.; Gomez, E.; Cohen, B.; Tohnai, N.; Douhal, A. Chem. Eur. J. 2017, 23, 11611.

    55. [55]

      Hisaki, I.; Toda, H.; Sato, H.; Tohnai, N.; Sakurai, H. Angew. Chem. Int. Ed. 2017, 56, 15294.

    56. [56]

      Hisaki, I.; Ikenaka, N.; Tsuzuki, S.; Tohnai, N. Mater. Chem. Front. 2018, 2, 338.

    57. [57]

      Hisaki, I.; Nakagawa, S.; Suzuki, Y.; Tohnai, N. Chem. Lett. 2018, 47, 1143.

    58. [58]

      Hisaki, I.; Suzuki, Y.; Gomez, E.; Cohen, B.; Tohnai, N.; Douhal, A. Angew. Chem. Int. Ed. 2018, 57, 12650.

    59. [59]

      Gomez, E.; Suzuki, Y.; Hisaki, I.; Moreno, M.; Douhal, A. J. Mater. Chem. C 2019, 7, 10818.

    60. [60]

      Hisaki, I.; Suzuki, Y.; Gomez, E.; Ji, Q.; Tohnai, N.; Nakamura, T.; Douhal, A. J. Am. Chem. Soc. 2019, 141, 2111.

    61. [61]

      Gomez, E.; di Nunzio, M. R.; Moreno, M.; Hisaki, I.; Douhal, A. J. Phys. Chem. C 2020, 124, 6938.

    62. [62]

      Hisaki, I.; Ji, Q.; Takahashi, K.; Tohnai, N.; Nakamura, T. Cryst. Growth Des. 2020, 20, 3190.

    63. [63]

      Hisaki, I. J. Incl. Phenom. Macro. 2020, 96, 215.

    64. [64]

      Yin, Q.; Lü, J.; Li, H.-F.; Liu, T.-F.; Cao, R. Cryst. Growth Des. 2019, 19, 4157.

    65. [65]

      Li, P.; Chen, Z.; Ryder, M. R.; Stern, C. L.; Guo, Q.-H.; Wang, X.; Farha, O. K.; Stoddart, J. F. J. Am. Chem. Soc. 2019, 141, 12998.

    66. [66]

      Li, P.; Li, P.; Ryder, M. R.; Liu, Z.; Stern, C. L.; Farha, O. K.; Stoddart, J. F. Angew. Chem. Int. Ed. 2019, 58, 1664.

    67. [67]

      Zhou, Y.; Liu, B.; Sun, X.; Li, J.; Li, G.; Huo, Q.; Liu, Y. Cryst. Growth Des. 2017, 17, 6653.

    68. [68]

      Bassanetti, I.; Bracco, S.; Comotti, A.; Negroni, M.; Bezuidenhout, C.; Canossa, S.; Mazzeo, P. P.; Marchió, L.; Sozzani, P. J. Mater. Chem. A 2018, 6, 14231.

    69. [69]

      Zhang, X.; Li, L.; Wang, J.-X.; Wen, H.-M.; Krishna, R.; Wu, H.; Zhou, W.; Chen, Z.-N.; Li, B.; Qian, G.; Chen, B. J. Am. Chem. Soc. 2020, 142, 633.

    70. [70]

      Gong, W.; Chu, D.; Jiang, H.; Chen, X.; Cui, Y.; Liu, Y. Nat. Commun. 2019, 10, 600.

    71. [71]

      Wang, L.; Yang, L.; Gong, L.; Krishna, R.; Gao, Z.; Tao, Y.; Yin, W.; Xu, Z.; Luo, F. Chem. Eng. J. 2020, 383, 123117.

    72. [72]

      Liu, T.; Wang, B.; He, R.; Arman, H.; Schanze, K. S.; Xiang, S.; Li, D.; Chen, B. Can. J. Chem. 2020, 98, 352.

    73. [73]

      Takeda, T.; Ozawa, M.; Akutagawa, T. Angew. Chem. Int. Ed. 2019, 58, 10345.

    74. [74]

      Wang, B.; He, R.; Xie, L.-H.; Lin, Z.-J.; Zhang, X.; Wang, J.; Huang, H.; Zhang, Z.; Schanze, K. S.; Zhang, J.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2020, 142, 12478.

    75. [75]

      Brunet, P.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1997, 119, 2737.

    76. [76]

      Fournier, J.-H.; Maris, T.; Wuest, J. D. J. Org. Chem. 2004, 69, 1762.

    77. [77]

      Demers, E.; Maris, T.; Wuest, J. D. Cryst. Growth Des. 2005, 5, 1227.

    78. [78]

      Malek, N.; Maris, T.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 2005, 127, 5910.

    79. [79]

      Maly, K. E.; Gagnon, E.; Maris, T.; Wuest, J. D. J. Am. Chem. Soc. 2007, 129, 4306.

    80. [80]

      Helzy, F.; Maris, T.; Wuest, J. D. Cryst. Growth Des. 2008, 8, 1547.

    81. [81]

      Helzy, F.; Maris, T.; Wuest, J. D. J. Org. Chem. 2016, 81, 3076.

    82. [82]

      Beaudoin, D.; Blair-Pereira, J.-N.; Langis-Barsetti, S.; Maris, T.; Wuest, J. D. J. Org. Chem. 2017, 82, 8536.

    83. [83]

      Duong, A.; Rajak, S.; Tremblay, A. A.; Maris, T.; Wuest, J. D. Cryst. Growth Des. 2019, 19, 1299.

    84. [84]

      Li, P.; He, Y.; Guang, J.; Weng, L.; Zhao, J. C.-G.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2014, 136, 547.

    85. [85]

      Li, P.; He, Y.; Zhao, Y.; Weng, L.; Wang, H.; Krishna, R.; Wu, H.; Zhou, W.; O'Keeffe, M.; Han, Y.; Chen, B. Angew. Chem. Int. Ed. 2015, 54, 574.

    86. [86]

      Li, P.; He, Y.; Arman, H. D.; Krishna, R.; Wang, H.; Weng, L.; Chen, B. Chem. Commun. 2014, 50, 13081.

    87. [87]

      Wang, H.; Li, B.; Wu, H.; Hu, T.-L.; Yao, Z.; Zhou, W.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2015, 137, 9963.

    88. [88]

      Yang, W.; Yang, F.; Hu, T.-L.; King, S. C.; Wang, H.; Wu, H.; Zhou, W.; Li, J.-R.; Arman, H. D.; Chen, B. Cryst. Growth Des. 2016, 16, 5831.

    89. [89]

      Yang, W.; Li, B.; Wang, H.; Alduhaish, O.; Alfooty, K.; Zayed, M. A.; Li, P.; Arman, H. D.; Chen, B. Cryst. Growth Des. 2015, 15, 2000.

    90. [90]

      Wang, H.; Wu, H.; Kan, J.; Chang, G.; Yao, Z.; Li, B.; Zhou, W.; Xiang, S.; Cong-Gui Zhao, J.; Chen, B. J. Mater. Chem. A 2017, 5, 8292.

    91. [91]

      Wang, H.; Bao, Z.; Wu, H.; Lin, R.-B.; Zhou, W.; Hu, T.-L.; Li, B.; Zhao, J. C.-G.; Chen, B. Chem. Commun. 2017, 53, 11150.

    92. [92]

      Wang, Y.; Liu, D.; Yin, J.; Shang, Y.; Du, J.; Kang, Z.; Wang, R.; Chen, Y.; Sun, D.; Jiang, J. Chem. Commun. 2020, 56, 703.

    93. [93]

      Feng, S.; Shang, Y.; Wang, Z.; Kang, Z.; Wang, R.; Jiang, J.; Fan, L.; Fan, W.; Liu, Z.; Kong, G.; Feng, Y.; Hu, S.; Guo, H.; Sun, D. Angew. Chem. Int. Ed. 2020, 59, 3840.

    94. [94]

      Chen, T.-H.; Popov, I.; Kaveevivitchai, W.; Chuang, Y.-C.; Chen, Y.-S.; Daugulis, O.; Jacobson, A. J.; Miljanić, O. Š. Nat. Commun. 2014, 5, 5131.

    95. [95]

      Hashim, M. I.; Le, H. T. M.; Chen, T.-H.; Chen, Y.-S.; Daugulis, O.; Hsu, C.-W.; Jacobson, A. J.; Kaveevivitchai, W.; Liang, X.; Makarenko, T.; Miljanić, O. Š.; Popovs, I.; Tran, H. V.; Wang, X.; Wu, C.-H.; Wu, J. I. J. Am. Chem. Soc. 2018, 140, 6014.

    96. [96]

      Yan, W.; Yu, X.; Yan, T.; Wu, D.; Ning, E.; Qi, Y.; Han, Y.-F.; Li, Q. Chem. Commun. 2017, 53, 3677.

    97. [97]

      Yamagishi, H.; Sato, H.; Hori, A.; Sato, Y.; Matsuda, R.; Kato, K.; Aida, T. Science 2018, 361, 1242.

    98. [98]

      Luo, X.-Z.; Jia, X.-J.; Deng, J.-H.; Zhong, J.-L.; Liu, H.-J.; Wang, K.-J.; Zhong, D.-C. J. Am. Chem. Soc. 2013, 135, 11684.

    99. [99]

      Smith, A. Acta Crystallographica 1952, 5, 224.

    100. [100]

      Harris, K. D. M. Chem. Soc. Rev. 1997, 26, 279.

    101. [101]

      Mastalerz, M.; Oppel, I. M. Angew. Chem. Int. Ed. 2012, 51, 5252.

    102. [102]

      Adachi, T.; Ward, M. D. Acc. Chem. Res. 2016, 49, 2669.

    103. [103]

      Karmakar, A.; Illathvalappil, R.; Anothumakkool, B.; Sen, A.; Samanta, P.; Desai, A. V.; Kurungot, S.; Ghosh, S. K. Angew. Chem. Int. Ed. 2016, 55, 10667.

    104. [104]

      Kang, D. W.; Kang, M.; Kim, H.; Choe, J. H.; Kim, D. W.; Park, J. R.; Lee, W. R.; Moon, D.; Hong, C. S. Angew. Chem. Int. Ed. 2019, 58, 16152.

    105. [105]

      Brekalo, I.; Deliz, D. E.; Barbour, L. J.; Ward, M. D.; Friščić, T.; Holman, K. T. Angew. Chem. Int. Ed. 2020, 59, 1997.

    106. [106]

      Yamamoto, A.; Hirukawa, T.; Hisaki, I.; Miyata, M.; Tohnai, N. Tetrahedron Lett. 2013, 54, 1268.

    107. [107]

      Comotti, A.; Bracco, S.; Yamamoto, A.; Beretta, M.; Hirukawa, T.; Tohnai, N.; Miyata, M.; Sozzani, P. J. Am. Chem. Soc. 2014, 136, 618.

    108. [108]

      Xing, G.; Yan, T.; Das, S.; Ben, T.; Qiu, S. Angew. Chem. Int. Ed. 2018, 57, 5345.

    109. [109]

      Morshedi, M.; Ward, J. S.; Kruger, P. E.; White, N. G. Dalton Trans. 2018, 47, 783.

    110. [110]

      Boer, S. A.; Morshedi, M.; Tarzia, A.; Doonan, C. J.; White, N. G. Chem. Eur. J. 2019, 25, 10006.

    111. [111]

      Boer, S. A.; Wang, P.-X.; MacLachlan, M. J.; White, N. G. Cryst. Growth Des. 2019, 19, 4829.

    112. [112]

      Cullen, D. A.; Gardiner, M. G.; White, N. G. Chem. Commun. 2019, 55, 12020.

    113. [113]

      Liang, W.; Carraro, F.; Solomon, M. B.; Bell, S. G.; Amenitsch, H.; Sumby, C. J.; White, N. G.; Falcaro, P.; Doonan, C. J. J. Am. Chem. Soc. 2019, 141, 14298.

    114. [114]

      Morshedi, M.; Thomas, M.; Tarzia, A.; Doonan, C. J.; White, N. G. Chem. Sci. 2017, 8, 3019.

    115. [115]

      Morshedi, M.; White, N. G. CrystEngComm 2017, 19, 2367.

    116. [116]

      Huang, Y.-G.; Shiota, Y.; Wu, M.-Y.; Su, S.-Q.; Yao, Z.-S.; Kang, S.; Kanegawa, S.; Li, G.-L.; Wu, S.-Q.; Kamachi, T.; Yoshizawa, K.; Ariga, K.; Hong, M.-C.; Sato, O. Nat.Commun. 2016, 7, 11564.

    117. [117]

      Luo, Y.-H.; He, X.-T.; Hong, D.-L.; Chen, C.; Chen, F.-H.; Jiao, J.; Zhai, L.-H.; Guo, L.-H.; Sun, B.-W. Adv. Funct. Mater. 2018, 28, 1804822.

    118. [118]

      Zheng, X.; Xiao, N.; Long, Z.; Wang, L.; Ye, F.; Fang, J.; Shen, L.; Xiao, X. Synth. Met. 2020, 263, 116365.

    119. [119]

      Lü, J.; Perez-Krap, C.; Suyetin, M.; Alsmail, N. H.; Yan, Y.; Yang, S.; Lewis, W.; Bichoutskaia, E.; Tang, C. C.; Blake, A. J.; Cao, R.; Schröder, M. J. Am. Chem. Soc. 2014, 136, 12828.

    120. [120]

      Lü, J.; Perez-Krap, C.; Trousselet, F.; Yan, Y.; Alsmail, N. H.; Karadeniz, B.; Jacques, N. M.; Lewis, W.; Blake, A. J.; Coudert, F.-X.; Cao, R.; Schrder, M. Cryst. Growth Des. 2018, 18, 2555.

    121. [121]

      He, X.-T.; Luo, Y.-H.; Hong, D.-L.; Chen, F.-H.; Zheng, Z.-Y.; Wang, C.; Wang, J.-Y.; Chen, C.; Sun, B.-W. ACS Appl. Nano Mater. 2019, 2, 2437.

    122. [122]

      Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012, 112, 782.

    123. [123]

      Wang, B.; Zhang, X.; Huang, H.; Zhang, Z.; Yildirim, T.; Zhou, W.; Xiang, S.; Chen, B. Nano Res. 2020, doi: 10.1007/s12274-020- 2713-0.  doi: 10.1007/s12274-020-2713-0

    124. [124]

      Sumida, K.; Brown, C. M.; Herm, Z. R.; Chavan, S.; Bordiga, S.; Long, J. R. Chem. Commun. 2011, 47, 1157.

    125. [125]

      Farha, O. K.; Spokoyny, A. M.; Mulfort, K. L.; Galli, S.; Hupp, J. T.; Mirkin, C. A. Small 2009, 5, 1727.

    126. [126]

      Nugent, P. S.; Rhodus, V. L.; Pham, T.; Forrest, K.; Wojtas, L.; Space, B.; Zaworotko, M. J. J. Am. Chem. Soc. 2013, 135, 10950.

    127. [127]

      Yoon, T.-U.; Baek, S. B.; Kim, D.; Kim, E.-J.; Lee, W.-G.; Singh, B. K.; Lah, M. S.; Bae, Y.-S.; Kim, K. S. Chem. Commun. 2018, 54, 9360.

    128. [128]

      Zhang, Z.; Li, J.; Yao, Y.; Sun, S. Cryst. Growth Des. 2015, 15, 5028.

    129. [129]

      Stackhouse, C.; Ren, J.; Shan, C.; Nafady, A.; Al-Enizi, A. M.; Ubaidullah, M.; Niu, Z.; Ma, S. Cryst. Growth Des. 2019, 19, 6377.

    130. [130]

      Khadivjam, T.; Che-Quang, H.; Maris, T.; Ajoyan, Z.; Howarth, A. J.; Wuest, J. D. Chem. Eur. J. 2020, 26, 7026.

    131. [131]

      Han, B.; Wang, H.; Wang, C.; Wu, H.; Zhou, W.; Chen, B.; Jiang, J. J. Am. Chem. Soc. 2019, 141, 8737.

    132. [132]

      Bao, Z.; Xie, D.; Chang, G.; Wu, H.; Li, L.; Zhou, W.; Wang, H.; Zhang, Z.; Xing, H.; Yang, Q.; Zaworotko, M. J.; Ren, Q.; Chen, B. J. Am. Chem. Soc. 2018, 140, 4596.

    133. [133]

      Zhou, M.; Liu, G.; Ju, Z.; Su, K.; Du, S.; Tan, Y.; Yuan, D. Cryst. Growth Des. 2020, 20, 4127.

    134. [134]

      Chen, B. Sci.China Chem. 2017, 60, 683.

    135. [135]

      Yin, Q.; Li, Y.-L.; Li, L.; Lü, J.; Liu, T.-F.; Cao, R. ACS Appl. Mater. Inter. 2019, 11, 17823.

    136. [136]

      Shi, Z.-Q.; Ji, N.-N.; Guo, K.-M.; Li, G. Appl. Surf. Sci. 2020, 504, 144484.

    137. [137]

      Yang, Q.; Wang, Y.; Shang, Y.; Du, J.; Yin, J.; Liu, D.; Kang, Z.; Wang, R.; Sun, D.; Jiang, J. Cryst. Growth Des. 2020, 20, 3456.

    138. [138]

      Chand, S.; Pal, S. C.; Pal, A.; Ye, Y.; Lin, Q.; Zhang, Z.; Xiang, S.; Das, M. C. Chem. Eur. J. 2019, 25, 1691.

    139. [139]

      Zheng, H.-Q.; He, X.-H.; Zeng, Y.-N.; Qiu, W.-H.; Chen, J.; Cao, G.-J.; Lin, R.-G.; Lin, Z.-J.; Chen, B. J. Mater. Chem. A 2020, 8, 17219.

    140. [140]

      Gong, W.; Liu, Y.; Li, H.; Cui, Y. Coord. Chem. Rev. 2020, 420, 213400.

    141. [141]

      Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242 (in Chinese).

    142. [142]

      Liu, F. Q.; Liu, J. W.; Gao, Z.; Wang, L.; Fu, X.-Z.; Yang, L. X.; Tao, Y.; Yin, W. H.; Luo, F. Appl. Catal. B: Environ. 2019, 258, 117973.

    143. [143]

      Aitchison, C. M.; Kane, C. M.; McMahon, D. P.; Spackman, P. R.; Pulido, A.; Wang, X.; Wilbraham, L.; Chen, L.; Clowes, R.; Zwijnenburg, M. A.; Sprick, R. S.; Little, M. A.; Day, G. M.; Cooper, A. I. J. Mater. Chem. A 2020, 8, 7158.

    144. [144]

      He, X.-T.; Luo, Y.-H.; Zheng, Z.-Y.; Wang, C.; Wang, J.-Y.; Hong, D.-L.; Zhai, L.-H.; Guo, L.-H.; Sun, B.-W. ACS Appl. Nano Mater. 2019, 2, 7719.

    145. [145]

      Sun, Z.; Li, Y.; Chen, L.; Jing, X.; Xie, Z. Cryst. Growth Des. 2015, 15, 542.

    146. [146]

      Feng, J.-F.; Yan, X.-Y.; Ji, Z.-Y.; Liu, T.-F.; Cao, R. ACS Appl. Mater. Inter. 2020, 12, 29854.

    147. [147]

      Lin, Z.-J.; Zheng, H.-Q.; Zeng, Y.-N.; Wang, Y.-L.; Chen, J.; Cao, G.-J.; Gu, J.-F.; Chen, B. Chem. Eng. J. 2019, 378, 122196.

    148. [148]

      Lin, Z.-J.; Zheng, H.-Q.; Zheng, H.-Y.; Lin, L.-P.; Xin, Q.; Cao, R. Inorg. Chem. 2017, 56, 14178.

    149. [149]

      Zeng, C.-H.; Luo, Z.; Yao, J. CrystEngComm 2017, 19, 613.

    150. [150]

      Lin, Y.; Jiang, X.; Kim, S. T.; Alahakoon, S. B.; Hou, X.; Zhang, Z.; Thompson, C. M.; Smaldone, R. A.; Ke, C. J. Am. Chem. Soc. 2017, 139, 7172.

    151. [151]

      Yao, R.-X.; Cui, X.; Jia, X.-X.; Zhang, F.-Q.; Zhang, X.-M. Inorg. Chem. 2016, 55, 9270.

    152. [152]

      Liao, Y.; Weber, J.; Mills, B. M.; Ren, Z.; Faul, C. F. J. Macromolecules 2016, 49, 6322.

    153. [153]

      Ren, F.; Zhu, Z.; Qian, X.; Liang, W.; Mu, P.; Sun, H.; Liu, J.; Li, A. Chem. Commun. 2016, 52, 9797.

    154. [154]

      Hoshino, M.; Khutia, A.; Xing, H.; Inokuma, Y.; Fujita, M. IUCrJ 2016, 3, 139.

    155. [155]

      Lee, S.; Kapustin, E. A.; Yaghi, O. M. Science 2016, 353, 808.

    156. [156]

      Pei, X.; Bürgi, H.-B.; Kapustin, E. A.; Liu, Y.; Yaghi, O. M. J. Am. Chem. Soc. 2019, 141, 18862.

    157. [157]

      Li, Y.; Tang, S.; Yusov, A.; Rose, J.; Borrfors, A. N.; Hu, C. T.; Ward, M. D. Nat. Commun. 2019, 10, 4477.

  • 加载中
    1. [1]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    2. [2]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    5. [5]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    6. [6]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    7. [7]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    18. [18]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    19. [19]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    20. [20]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

Metrics
  • PDF Downloads(689)
  • Abstract views(13499)
  • HTML views(5072)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return