Citation: Lin Zu-Jin, Cao Rong. Porous Hydrogen-bonded Organic Frameworks (HOFs): Status and Challenges[J]. Acta Chimica Sinica, ;2020, 78(12): 1309-1335. doi: 10.6023/A20080359 shu

Porous Hydrogen-bonded Organic Frameworks (HOFs): Status and Challenges

  • Corresponding author: Lin Zu-Jin, linzujin@fafu.edu.cn Cao Rong, rcao@fjirsm.ac.cn
  • Received Date: 12 August 2020
    Available Online: 3 September 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21520102001), Natural Science Foundation of Fujian Province of China (No. 2020J01549), and Fujian Agriculture and Forestry University (Nos. 118360020, XJQ201616)Natural Science Foundation of Fujian Province of China 2020J01549Fujian Agriculture and Forestry University 118360020Fujian Agriculture and Forestry University XJQ201616the National Natural Science Foundation of China 21520102001

Figures(31)

  • Hydrogen-bonded organic frameworks (HOFs), usually self-assembled by organic or metal-organic building blocks via intermolecular H-bonding interactions, have become a unique type of crystalline porous material. Although the weak and flexible nature of hydrogen bonds makes most HOFs fragile, the high stability and permanent porosity could be realized by the judicious selection of rigid building blocks with special spatial configuration as well as the introduction of framework interpenetration and/or other intermolecular interactions like π-π stacking and electrostatic interactions, etc. Compared with other crystalline porous materials like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), HOFs feature mild preparation condition, high crystallinity, permissible solution processability, easy healing and regeneration, etc. These distinguishing merits make HOFs capable to be used as unique multifunctional porous materials. Herein, we first review the basic rules to design and synthesize stable and porous HOFs, and then systematically summarize the representative supramolecular synthons and backbones that have been used to build stable and porous HOFs. Emphasis is put on the potential applications of HOFs in gas adsorption and separation, proton conduction, heterogeneous catalysis, luminescence and sensing, biological applications, enantiomeric resolution and aromatic compounds separation, pollutants removal, and structure determination, etc.
  • 加载中
    1. [1]

      Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703.

    2. [2]

      Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chin. J. Chem. 2020, 38, 509.

    3. [3]

      Kitagawa, S.; Kitaura, R.; Noro, S.-i. Angew. Chem. Int. Ed. 2004, 43, 2334.

    4. [4]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.

    5. [5]

      Lv, H.; Sa, R.; Li, P.; Yuan, D.; Wang, X.; Wang, R. Sci. China Chem. 2020, 63, 1289.

    6. [6]

      He, Y.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2011, 133, 14570.

    7. [7]

      Lin, Z.-J.; Lü, J.; Hong, M.; Cao, R. Chem. Soc. Rev. 2014, 43, 5867.

    8. [8]

      Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1989, 111, 5962.

    9. [9]

      Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1990, 112, 1546.

    10. [10]

      Li, H.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 8571.

    11. [11]

      Kondo, M.; Yoshitomi, T.; Matsuzaka, H.; Kitagawa, S.; Seki, K. Angew. Chem. Int. Ed. 1997, 36, 1725.

    12. [12]

      Kim, J.; Chen, B.; Reineke, T. M.; Li, H.; Eddaoudi, M.; Moler, D. B.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2001, 123, 8239.

    13. [13]

      Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319.

    14. [14]

      Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2005, 38, 176.

    15. [15]

      O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc. Chem. Res. 2008, 41, 1782.

    16. [16]

      O’Keeffe, M. Chem. Soc. Rev. 2009, 38, 1215.

    17. [17]

      Zeng, Y.-N.; Zheng, H.-Q.; Gu, J.-F.; Cao, G.-J.; Zhuang, W.-E.; Lin, J.-D.; Cao, R.; Lin, Z.-J. Inorg. Chem. 2019, 58, 13360.

    18. [18]

      Zeng, Y.-N.; Zheng, H.-Q.; He, X.-H.; Cao, G.-J.; Wang, B.; Wu, K.; Lin, Z.-J. Dalton Trans. 2020, 49, 9680.

    19. [19]

      Zheng, H.-Q.; Liu, C.-Y.; Zeng, X.-Y.; Chen, J.; Lü, J.; Lin, R.-G.; Cao, R.; Lin, Z.-J.; Su, J.-W. Inorg. Chem. 2018, 57, 9096.

    20. [20]

      Wang, Z.; Zhang, S.; Chen, Y.; Zhang, Z.; Ma, S. Chem. Soc. Rev. 2020, 49, 708.

    21. [21]

      Liu, J. G.; Zhang, M. Y.; Wang, N.; Wang, C. G.; Ma, L. L. Acta Chim. Sinica 2020, 78, 311 (in Chinese).

    22. [22]

      Peng, Z. K.; Ding, H. M.; Chen, R. F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681 (in Chinese).

    23. [23]

      Luo, J.; Wang, J.-W.; Zhang, J.-H.; Lai, S.; Zhong, D.-C. CrystEngComm 2018, 20, 5884.

    24. [24]

      Hisaki, I.; Xin, C.; Takahashi, K.; Nakamura, T. Angew. Chem. Int. Ed. 2019, 58, 11160.

    25. [25]

      Lin, R.-B.; He, Y.; Li, P.; Wang, H.; Zhou, W.; Chen, B. Chem. Soc. Rev. 2019, 48, 1362.

    26. [26]

      Yang, J.; Wang, J.; Hou, B.; Huang, X.; Wang, T.; Bao, Y.; Hao, H. Chem. Eng. J. 2020, 399, 125873.

    27. [27]

      Wang, B.; Lin, R.-B.; Zhang, Z.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2020, 14399.

    28. [28]

      Lü, J.; Cao, R. Angew. Chem. Int. Ed. 2016, 55, 9474.

    29. [29]

      Duchamp, D. J.; Marsh, R. E. Acta Crystallogr. B 1969, 25, 5.

    30. [30]

      Simard, M.; Su, D.; Wuest, J. D. J. Am. Chem. Soc. 1991, 113, 4696.

    31. [31]

      Wang, X.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1994, 116, 12119.

    32. [32]

      Yang, W.; Greenaway, A.; Lin, X.; Matsuda, R.; Blake, A. J.; Wilson, C.; Lewis, W.; Hubberstey, P.; Kitagawa, S.; Champness, N. R.; Schrder, M. J. Am. Chem. Soc. 2010, 132, 14457.

    33. [33]

      Hu, Y.-X.; Li, W.-J.; Jia, P.-P.; Wang, X.-Q.; Xu, L.; Yang, H.-B. Adv. Opt. Mater. 2020, 8, 2000265.

    34. [34]

      Hu, F.; Liu, C.; Wu, M.; Pang, J.; Jiang, F.; Yuan, D.; Hong, M. Angew. Chem. Int. Ed. 2017, 56, 2101.

    35. [35]

      Huang, Q.; Li, W.; Mao, Z.; Qu, L.; Li, Y.; Zhang, H.; Yu, T.; Yang, Z.; Zhao, J.; Zhang, Y.; Aldred, M. P.; Chi, Z. Nat. Commun. 2019, 10, 3074.

    36. [36]

      Li, Y.-L.; Alexandrov, E. V.; Yin, Q.; Li, L.; Fang, Z.-B.; Yuan, W.; Proserpio, D. M.; Liu, T.-F. J. Am. Chem. Soc. 2020, 142, 7218.

    37. [37]

      Pulido, A.; Chen, L.; Kaczorowski, T.; Holden, D.; Little, M. A.; Chong, S. Y.; Slater, B. J.; McMahon, D. P.; Bonillo, B.; Stackhouse, C. J.; Stephenson, A.; Kane, C. M.; Clowes, R.; Hasell, T.; Cooper, A. I.; Day, G. M. Nature 2017, 543, 657.

    38. [38]

      Cui, P.; McMahon, D. P.; Spackman, P. R.; Alston, B. M.; Little, M. A.; Day, G. M.; Cooper, A. I. Chem. Sci. 2019, 10, 9988.

    39. [39]

      Cui, P.; Svensson Grape, E.; Spackman, P. R.; Wu, Y.; Clowes, R.; Day, G. M.; Inge, A. K.; Little, M. A.; Cooper, A. I. J. Am. Chem. Soc. 2020, 12743.

    40. [40]

      Desiraju, G. R. Angew. Chem. Int. Ed. 1995, 34, 2311.

    41. [41]

      Herbstein, F. H.; Kapon, M.; Reisner, G. M. J. Incl. Phenom. 1987, 5, 211.

    42. [42]

      Zentner, C. A.; Lai, H. W. H.; Greenfield, J. T.; Wiscons, R. A.; Zeller, M.; Campana, C. F.; Talu, O.; FitzGerald, S. A.; Rowsell, J. L. C. Chem. Commun. 2015, 51, 11642.

    43. [43]

      Nandi, S.; Chakraborty, D.; Vaidhyanathan, R. Chem. Commun. 2016, 52, 7249.

    44. [44]

      Yang, W.; Wang, J.; Wang, H.; Bao, Z.; Zhao, J. C.-G.; Chen, B. Cryst. Growth Des. 2017, 17, 6132.

    45. [45]

      Lai, H. W. H.; Wiscons, R. A.; Zentner, C. A.; Zeller, M.; Rowsell, J. L. C. Cryst. Growth Des. 2016, 16, 821.

    46. [46]

      Yang, W.; Zhou, W.; Chen, B. Cryst. Growth Des. 2019, 19, 5184.

    47. [47]

      Yin, Q.; Zhao, P.; Sa, R. J.; Chen, G. C.; Lu, J.; Liu, T. F.; Cao, R. Angew. Chem. Int. Ed. 2018, 57, 7691.

    48. [48]

      Wang, B.; Lv, X.-L.; Lv, J.; Ma, L.; Lin, R.-B.; Cui, H.; Zhang, J.; Zhang, Z.; Xiang, S.; Chen, B. Chem. Commun. 2020, 56, 66.

    49. [49]

      Ma, K.; Li, P.; Xin, J. H.; Chen, Y.; Chen, Z.; Goswami, S.; Liu, X.; Kato, S.; Chen, H.; Zhang, X.; Bai, J.; Wasson, M. C.; Maldonado, R. R.; Snurr, R. Q.; Farha, O. K. Cell Reports Physical Science 2020, 1, 100024.

    50. [50]

      Hisaki, I.; Nakagawa, S.; Tohnai, N.; Miyata, M. Angew. Chem. Int. Ed. 2015, 54, 3008.

    51. [51]

      Hisaki, I.; Ikenaka, N.; Tohnai, N.; Miyata, M. Chem. Commun. 2016, 52, 300.

    52. [52]

      Hisaki, I.; Nakagawa, S.; Ikenaka, N.; Imamura, Y.; Katouda, M.; Tashiro, M.; Tsuchida, H.; Ogoshi, T.; Sato, H.; Tohnai, N.; Miyata, M. J. Am. Chem. Soc. 2016, 138, 6617.

    53. [53]

      Hisaki, I.; Nakagawa, S.; Sato, H.; Tohnai, N. Chem. Commun. 2016, 52, 9781.

    54. [54]

      Hisaki, I.; Ikenaka, N.; Gomez, E.; Cohen, B.; Tohnai, N.; Douhal, A. Chem. Eur. J. 2017, 23, 11611.

    55. [55]

      Hisaki, I.; Toda, H.; Sato, H.; Tohnai, N.; Sakurai, H. Angew. Chem. Int. Ed. 2017, 56, 15294.

    56. [56]

      Hisaki, I.; Ikenaka, N.; Tsuzuki, S.; Tohnai, N. Mater. Chem. Front. 2018, 2, 338.

    57. [57]

      Hisaki, I.; Nakagawa, S.; Suzuki, Y.; Tohnai, N. Chem. Lett. 2018, 47, 1143.

    58. [58]

      Hisaki, I.; Suzuki, Y.; Gomez, E.; Cohen, B.; Tohnai, N.; Douhal, A. Angew. Chem. Int. Ed. 2018, 57, 12650.

    59. [59]

      Gomez, E.; Suzuki, Y.; Hisaki, I.; Moreno, M.; Douhal, A. J. Mater. Chem. C 2019, 7, 10818.

    60. [60]

      Hisaki, I.; Suzuki, Y.; Gomez, E.; Ji, Q.; Tohnai, N.; Nakamura, T.; Douhal, A. J. Am. Chem. Soc. 2019, 141, 2111.

    61. [61]

      Gomez, E.; di Nunzio, M. R.; Moreno, M.; Hisaki, I.; Douhal, A. J. Phys. Chem. C 2020, 124, 6938.

    62. [62]

      Hisaki, I.; Ji, Q.; Takahashi, K.; Tohnai, N.; Nakamura, T. Cryst. Growth Des. 2020, 20, 3190.

    63. [63]

      Hisaki, I. J. Incl. Phenom. Macro. 2020, 96, 215.

    64. [64]

      Yin, Q.; Lü, J.; Li, H.-F.; Liu, T.-F.; Cao, R. Cryst. Growth Des. 2019, 19, 4157.

    65. [65]

      Li, P.; Chen, Z.; Ryder, M. R.; Stern, C. L.; Guo, Q.-H.; Wang, X.; Farha, O. K.; Stoddart, J. F. J. Am. Chem. Soc. 2019, 141, 12998.

    66. [66]

      Li, P.; Li, P.; Ryder, M. R.; Liu, Z.; Stern, C. L.; Farha, O. K.; Stoddart, J. F. Angew. Chem. Int. Ed. 2019, 58, 1664.

    67. [67]

      Zhou, Y.; Liu, B.; Sun, X.; Li, J.; Li, G.; Huo, Q.; Liu, Y. Cryst. Growth Des. 2017, 17, 6653.

    68. [68]

      Bassanetti, I.; Bracco, S.; Comotti, A.; Negroni, M.; Bezuidenhout, C.; Canossa, S.; Mazzeo, P. P.; Marchió, L.; Sozzani, P. J. Mater. Chem. A 2018, 6, 14231.

    69. [69]

      Zhang, X.; Li, L.; Wang, J.-X.; Wen, H.-M.; Krishna, R.; Wu, H.; Zhou, W.; Chen, Z.-N.; Li, B.; Qian, G.; Chen, B. J. Am. Chem. Soc. 2020, 142, 633.

    70. [70]

      Gong, W.; Chu, D.; Jiang, H.; Chen, X.; Cui, Y.; Liu, Y. Nat. Commun. 2019, 10, 600.

    71. [71]

      Wang, L.; Yang, L.; Gong, L.; Krishna, R.; Gao, Z.; Tao, Y.; Yin, W.; Xu, Z.; Luo, F. Chem. Eng. J. 2020, 383, 123117.

    72. [72]

      Liu, T.; Wang, B.; He, R.; Arman, H.; Schanze, K. S.; Xiang, S.; Li, D.; Chen, B. Can. J. Chem. 2020, 98, 352.

    73. [73]

      Takeda, T.; Ozawa, M.; Akutagawa, T. Angew. Chem. Int. Ed. 2019, 58, 10345.

    74. [74]

      Wang, B.; He, R.; Xie, L.-H.; Lin, Z.-J.; Zhang, X.; Wang, J.; Huang, H.; Zhang, Z.; Schanze, K. S.; Zhang, J.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2020, 142, 12478.

    75. [75]

      Brunet, P.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1997, 119, 2737.

    76. [76]

      Fournier, J.-H.; Maris, T.; Wuest, J. D. J. Org. Chem. 2004, 69, 1762.

    77. [77]

      Demers, E.; Maris, T.; Wuest, J. D. Cryst. Growth Des. 2005, 5, 1227.

    78. [78]

      Malek, N.; Maris, T.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 2005, 127, 5910.

    79. [79]

      Maly, K. E.; Gagnon, E.; Maris, T.; Wuest, J. D. J. Am. Chem. Soc. 2007, 129, 4306.

    80. [80]

      Helzy, F.; Maris, T.; Wuest, J. D. Cryst. Growth Des. 2008, 8, 1547.

    81. [81]

      Helzy, F.; Maris, T.; Wuest, J. D. J. Org. Chem. 2016, 81, 3076.

    82. [82]

      Beaudoin, D.; Blair-Pereira, J.-N.; Langis-Barsetti, S.; Maris, T.; Wuest, J. D. J. Org. Chem. 2017, 82, 8536.

    83. [83]

      Duong, A.; Rajak, S.; Tremblay, A. A.; Maris, T.; Wuest, J. D. Cryst. Growth Des. 2019, 19, 1299.

    84. [84]

      Li, P.; He, Y.; Guang, J.; Weng, L.; Zhao, J. C.-G.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2014, 136, 547.

    85. [85]

      Li, P.; He, Y.; Zhao, Y.; Weng, L.; Wang, H.; Krishna, R.; Wu, H.; Zhou, W.; O'Keeffe, M.; Han, Y.; Chen, B. Angew. Chem. Int. Ed. 2015, 54, 574.

    86. [86]

      Li, P.; He, Y.; Arman, H. D.; Krishna, R.; Wang, H.; Weng, L.; Chen, B. Chem. Commun. 2014, 50, 13081.

    87. [87]

      Wang, H.; Li, B.; Wu, H.; Hu, T.-L.; Yao, Z.; Zhou, W.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2015, 137, 9963.

    88. [88]

      Yang, W.; Yang, F.; Hu, T.-L.; King, S. C.; Wang, H.; Wu, H.; Zhou, W.; Li, J.-R.; Arman, H. D.; Chen, B. Cryst. Growth Des. 2016, 16, 5831.

    89. [89]

      Yang, W.; Li, B.; Wang, H.; Alduhaish, O.; Alfooty, K.; Zayed, M. A.; Li, P.; Arman, H. D.; Chen, B. Cryst. Growth Des. 2015, 15, 2000.

    90. [90]

      Wang, H.; Wu, H.; Kan, J.; Chang, G.; Yao, Z.; Li, B.; Zhou, W.; Xiang, S.; Cong-Gui Zhao, J.; Chen, B. J. Mater. Chem. A 2017, 5, 8292.

    91. [91]

      Wang, H.; Bao, Z.; Wu, H.; Lin, R.-B.; Zhou, W.; Hu, T.-L.; Li, B.; Zhao, J. C.-G.; Chen, B. Chem. Commun. 2017, 53, 11150.

    92. [92]

      Wang, Y.; Liu, D.; Yin, J.; Shang, Y.; Du, J.; Kang, Z.; Wang, R.; Chen, Y.; Sun, D.; Jiang, J. Chem. Commun. 2020, 56, 703.

    93. [93]

      Feng, S.; Shang, Y.; Wang, Z.; Kang, Z.; Wang, R.; Jiang, J.; Fan, L.; Fan, W.; Liu, Z.; Kong, G.; Feng, Y.; Hu, S.; Guo, H.; Sun, D. Angew. Chem. Int. Ed. 2020, 59, 3840.

    94. [94]

      Chen, T.-H.; Popov, I.; Kaveevivitchai, W.; Chuang, Y.-C.; Chen, Y.-S.; Daugulis, O.; Jacobson, A. J.; Miljanić, O. Š. Nat. Commun. 2014, 5, 5131.

    95. [95]

      Hashim, M. I.; Le, H. T. M.; Chen, T.-H.; Chen, Y.-S.; Daugulis, O.; Hsu, C.-W.; Jacobson, A. J.; Kaveevivitchai, W.; Liang, X.; Makarenko, T.; Miljanić, O. Š.; Popovs, I.; Tran, H. V.; Wang, X.; Wu, C.-H.; Wu, J. I. J. Am. Chem. Soc. 2018, 140, 6014.

    96. [96]

      Yan, W.; Yu, X.; Yan, T.; Wu, D.; Ning, E.; Qi, Y.; Han, Y.-F.; Li, Q. Chem. Commun. 2017, 53, 3677.

    97. [97]

      Yamagishi, H.; Sato, H.; Hori, A.; Sato, Y.; Matsuda, R.; Kato, K.; Aida, T. Science 2018, 361, 1242.

    98. [98]

      Luo, X.-Z.; Jia, X.-J.; Deng, J.-H.; Zhong, J.-L.; Liu, H.-J.; Wang, K.-J.; Zhong, D.-C. J. Am. Chem. Soc. 2013, 135, 11684.

    99. [99]

      Smith, A. Acta Crystallographica 1952, 5, 224.

    100. [100]

      Harris, K. D. M. Chem. Soc. Rev. 1997, 26, 279.

    101. [101]

      Mastalerz, M.; Oppel, I. M. Angew. Chem. Int. Ed. 2012, 51, 5252.

    102. [102]

      Adachi, T.; Ward, M. D. Acc. Chem. Res. 2016, 49, 2669.

    103. [103]

      Karmakar, A.; Illathvalappil, R.; Anothumakkool, B.; Sen, A.; Samanta, P.; Desai, A. V.; Kurungot, S.; Ghosh, S. K. Angew. Chem. Int. Ed. 2016, 55, 10667.

    104. [104]

      Kang, D. W.; Kang, M.; Kim, H.; Choe, J. H.; Kim, D. W.; Park, J. R.; Lee, W. R.; Moon, D.; Hong, C. S. Angew. Chem. Int. Ed. 2019, 58, 16152.

    105. [105]

      Brekalo, I.; Deliz, D. E.; Barbour, L. J.; Ward, M. D.; Friščić, T.; Holman, K. T. Angew. Chem. Int. Ed. 2020, 59, 1997.

    106. [106]

      Yamamoto, A.; Hirukawa, T.; Hisaki, I.; Miyata, M.; Tohnai, N. Tetrahedron Lett. 2013, 54, 1268.

    107. [107]

      Comotti, A.; Bracco, S.; Yamamoto, A.; Beretta, M.; Hirukawa, T.; Tohnai, N.; Miyata, M.; Sozzani, P. J. Am. Chem. Soc. 2014, 136, 618.

    108. [108]

      Xing, G.; Yan, T.; Das, S.; Ben, T.; Qiu, S. Angew. Chem. Int. Ed. 2018, 57, 5345.

    109. [109]

      Morshedi, M.; Ward, J. S.; Kruger, P. E.; White, N. G. Dalton Trans. 2018, 47, 783.

    110. [110]

      Boer, S. A.; Morshedi, M.; Tarzia, A.; Doonan, C. J.; White, N. G. Chem. Eur. J. 2019, 25, 10006.

    111. [111]

      Boer, S. A.; Wang, P.-X.; MacLachlan, M. J.; White, N. G. Cryst. Growth Des. 2019, 19, 4829.

    112. [112]

      Cullen, D. A.; Gardiner, M. G.; White, N. G. Chem. Commun. 2019, 55, 12020.

    113. [113]

      Liang, W.; Carraro, F.; Solomon, M. B.; Bell, S. G.; Amenitsch, H.; Sumby, C. J.; White, N. G.; Falcaro, P.; Doonan, C. J. J. Am. Chem. Soc. 2019, 141, 14298.

    114. [114]

      Morshedi, M.; Thomas, M.; Tarzia, A.; Doonan, C. J.; White, N. G. Chem. Sci. 2017, 8, 3019.

    115. [115]

      Morshedi, M.; White, N. G. CrystEngComm 2017, 19, 2367.

    116. [116]

      Huang, Y.-G.; Shiota, Y.; Wu, M.-Y.; Su, S.-Q.; Yao, Z.-S.; Kang, S.; Kanegawa, S.; Li, G.-L.; Wu, S.-Q.; Kamachi, T.; Yoshizawa, K.; Ariga, K.; Hong, M.-C.; Sato, O. Nat.Commun. 2016, 7, 11564.

    117. [117]

      Luo, Y.-H.; He, X.-T.; Hong, D.-L.; Chen, C.; Chen, F.-H.; Jiao, J.; Zhai, L.-H.; Guo, L.-H.; Sun, B.-W. Adv. Funct. Mater. 2018, 28, 1804822.

    118. [118]

      Zheng, X.; Xiao, N.; Long, Z.; Wang, L.; Ye, F.; Fang, J.; Shen, L.; Xiao, X. Synth. Met. 2020, 263, 116365.

    119. [119]

      Lü, J.; Perez-Krap, C.; Suyetin, M.; Alsmail, N. H.; Yan, Y.; Yang, S.; Lewis, W.; Bichoutskaia, E.; Tang, C. C.; Blake, A. J.; Cao, R.; Schröder, M. J. Am. Chem. Soc. 2014, 136, 12828.

    120. [120]

      Lü, J.; Perez-Krap, C.; Trousselet, F.; Yan, Y.; Alsmail, N. H.; Karadeniz, B.; Jacques, N. M.; Lewis, W.; Blake, A. J.; Coudert, F.-X.; Cao, R.; Schrder, M. Cryst. Growth Des. 2018, 18, 2555.

    121. [121]

      He, X.-T.; Luo, Y.-H.; Hong, D.-L.; Chen, F.-H.; Zheng, Z.-Y.; Wang, C.; Wang, J.-Y.; Chen, C.; Sun, B.-W. ACS Appl. Nano Mater. 2019, 2, 2437.

    122. [122]

      Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012, 112, 782.

    123. [123]

      Wang, B.; Zhang, X.; Huang, H.; Zhang, Z.; Yildirim, T.; Zhou, W.; Xiang, S.; Chen, B. Nano Res. 2020, doi: 10.1007/s12274-020- 2713-0.  doi: 10.1007/s12274-020-2713-0

    124. [124]

      Sumida, K.; Brown, C. M.; Herm, Z. R.; Chavan, S.; Bordiga, S.; Long, J. R. Chem. Commun. 2011, 47, 1157.

    125. [125]

      Farha, O. K.; Spokoyny, A. M.; Mulfort, K. L.; Galli, S.; Hupp, J. T.; Mirkin, C. A. Small 2009, 5, 1727.

    126. [126]

      Nugent, P. S.; Rhodus, V. L.; Pham, T.; Forrest, K.; Wojtas, L.; Space, B.; Zaworotko, M. J. J. Am. Chem. Soc. 2013, 135, 10950.

    127. [127]

      Yoon, T.-U.; Baek, S. B.; Kim, D.; Kim, E.-J.; Lee, W.-G.; Singh, B. K.; Lah, M. S.; Bae, Y.-S.; Kim, K. S. Chem. Commun. 2018, 54, 9360.

    128. [128]

      Zhang, Z.; Li, J.; Yao, Y.; Sun, S. Cryst. Growth Des. 2015, 15, 5028.

    129. [129]

      Stackhouse, C.; Ren, J.; Shan, C.; Nafady, A.; Al-Enizi, A. M.; Ubaidullah, M.; Niu, Z.; Ma, S. Cryst. Growth Des. 2019, 19, 6377.

    130. [130]

      Khadivjam, T.; Che-Quang, H.; Maris, T.; Ajoyan, Z.; Howarth, A. J.; Wuest, J. D. Chem. Eur. J. 2020, 26, 7026.

    131. [131]

      Han, B.; Wang, H.; Wang, C.; Wu, H.; Zhou, W.; Chen, B.; Jiang, J. J. Am. Chem. Soc. 2019, 141, 8737.

    132. [132]

      Bao, Z.; Xie, D.; Chang, G.; Wu, H.; Li, L.; Zhou, W.; Wang, H.; Zhang, Z.; Xing, H.; Yang, Q.; Zaworotko, M. J.; Ren, Q.; Chen, B. J. Am. Chem. Soc. 2018, 140, 4596.

    133. [133]

      Zhou, M.; Liu, G.; Ju, Z.; Su, K.; Du, S.; Tan, Y.; Yuan, D. Cryst. Growth Des. 2020, 20, 4127.

    134. [134]

      Chen, B. Sci.China Chem. 2017, 60, 683.

    135. [135]

      Yin, Q.; Li, Y.-L.; Li, L.; Lü, J.; Liu, T.-F.; Cao, R. ACS Appl. Mater. Inter. 2019, 11, 17823.

    136. [136]

      Shi, Z.-Q.; Ji, N.-N.; Guo, K.-M.; Li, G. Appl. Surf. Sci. 2020, 504, 144484.

    137. [137]

      Yang, Q.; Wang, Y.; Shang, Y.; Du, J.; Yin, J.; Liu, D.; Kang, Z.; Wang, R.; Sun, D.; Jiang, J. Cryst. Growth Des. 2020, 20, 3456.

    138. [138]

      Chand, S.; Pal, S. C.; Pal, A.; Ye, Y.; Lin, Q.; Zhang, Z.; Xiang, S.; Das, M. C. Chem. Eur. J. 2019, 25, 1691.

    139. [139]

      Zheng, H.-Q.; He, X.-H.; Zeng, Y.-N.; Qiu, W.-H.; Chen, J.; Cao, G.-J.; Lin, R.-G.; Lin, Z.-J.; Chen, B. J. Mater. Chem. A 2020, 8, 17219.

    140. [140]

      Gong, W.; Liu, Y.; Li, H.; Cui, Y. Coord. Chem. Rev. 2020, 420, 213400.

    141. [141]

      Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242 (in Chinese).

    142. [142]

      Liu, F. Q.; Liu, J. W.; Gao, Z.; Wang, L.; Fu, X.-Z.; Yang, L. X.; Tao, Y.; Yin, W. H.; Luo, F. Appl. Catal. B: Environ. 2019, 258, 117973.

    143. [143]

      Aitchison, C. M.; Kane, C. M.; McMahon, D. P.; Spackman, P. R.; Pulido, A.; Wang, X.; Wilbraham, L.; Chen, L.; Clowes, R.; Zwijnenburg, M. A.; Sprick, R. S.; Little, M. A.; Day, G. M.; Cooper, A. I. J. Mater. Chem. A 2020, 8, 7158.

    144. [144]

      He, X.-T.; Luo, Y.-H.; Zheng, Z.-Y.; Wang, C.; Wang, J.-Y.; Hong, D.-L.; Zhai, L.-H.; Guo, L.-H.; Sun, B.-W. ACS Appl. Nano Mater. 2019, 2, 7719.

    145. [145]

      Sun, Z.; Li, Y.; Chen, L.; Jing, X.; Xie, Z. Cryst. Growth Des. 2015, 15, 542.

    146. [146]

      Feng, J.-F.; Yan, X.-Y.; Ji, Z.-Y.; Liu, T.-F.; Cao, R. ACS Appl. Mater. Inter. 2020, 12, 29854.

    147. [147]

      Lin, Z.-J.; Zheng, H.-Q.; Zeng, Y.-N.; Wang, Y.-L.; Chen, J.; Cao, G.-J.; Gu, J.-F.; Chen, B. Chem. Eng. J. 2019, 378, 122196.

    148. [148]

      Lin, Z.-J.; Zheng, H.-Q.; Zheng, H.-Y.; Lin, L.-P.; Xin, Q.; Cao, R. Inorg. Chem. 2017, 56, 14178.

    149. [149]

      Zeng, C.-H.; Luo, Z.; Yao, J. CrystEngComm 2017, 19, 613.

    150. [150]

      Lin, Y.; Jiang, X.; Kim, S. T.; Alahakoon, S. B.; Hou, X.; Zhang, Z.; Thompson, C. M.; Smaldone, R. A.; Ke, C. J. Am. Chem. Soc. 2017, 139, 7172.

    151. [151]

      Yao, R.-X.; Cui, X.; Jia, X.-X.; Zhang, F.-Q.; Zhang, X.-M. Inorg. Chem. 2016, 55, 9270.

    152. [152]

      Liao, Y.; Weber, J.; Mills, B. M.; Ren, Z.; Faul, C. F. J. Macromolecules 2016, 49, 6322.

    153. [153]

      Ren, F.; Zhu, Z.; Qian, X.; Liang, W.; Mu, P.; Sun, H.; Liu, J.; Li, A. Chem. Commun. 2016, 52, 9797.

    154. [154]

      Hoshino, M.; Khutia, A.; Xing, H.; Inokuma, Y.; Fujita, M. IUCrJ 2016, 3, 139.

    155. [155]

      Lee, S.; Kapustin, E. A.; Yaghi, O. M. Science 2016, 353, 808.

    156. [156]

      Pei, X.; Bürgi, H.-B.; Kapustin, E. A.; Liu, Y.; Yaghi, O. M. J. Am. Chem. Soc. 2019, 141, 18862.

    157. [157]

      Li, Y.; Tang, S.; Yusov, A.; Rose, J.; Borrfors, A. N.; Hu, C. T.; Ward, M. D. Nat. Commun. 2019, 10, 4477.

  • 加载中
    1. [1]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    19. [19]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    20. [20]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

Metrics
  • PDF Downloads(529)
  • Abstract views(9761)
  • HTML views(3325)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return