Citation: Zhang Mengting, Yan Tingting, Dai Weili, Guan Naijia, Li Landong. Zeolite Stabilized Isolated Molybdenum Species for Catalytic Oxidative Desulfurization[J]. Acta Chimica Sinica, ;2020, 78(12): 1404-1410. doi: 10.6023/A20080346 shu

Zeolite Stabilized Isolated Molybdenum Species for Catalytic Oxidative Desulfurization

  • Corresponding author: Li Landong, fycheng@nankai.edu.cn
  • Received Date: 4 August 2020
    Available Online: 17 September 2020

    Fund Project: Project supported by the Municipal Natural Science Foundation of Tianjin (Nos.18ICIQJC47400, 18ICZDIC37400) and Ffundamental Research Funds for theCentral Universities, Nankai Universitythe Municipal Natural Science Foundation of Tianjin 18ICZDIC37400the Municipal Natural Science Foundation of Tianjin Nos.18ICIQJC47400

Figures(4)

  • A series of Mo/beta zeolite samples with different Mo loadings were prepared via a two-step post-synthesis strategy using dealuminated Si-beta and bis(cyclopentadienyl) molybdenum dichloride (Cp2MoCl2) as precursors. The as-prepared samples were thoroughly characterized by a series of techniques including X-ray diffraction (XRD), the diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), temperature-programmed reduction by hydrogen (H2-TPR), high-resolution transmission electron microscopy (HR-TEM) and scanning transmission electron microscopy (STEM), Mo the K-edge X-ray absorption near edge structure (XANES), the extended X-ray absorption fine structure (EXAFS) and Raman spectroscopy. Dioxo (Si-O)2Mo(=O)2 species were determined to be the dominant Mo species confined and stabilized in structure of beta zeolite. The as-prepared Mo/beta samples were applied as potential catalysts in the reaction of oxidative desulfurization (ODS) from model fuel. The effects of catalyst supports, molybdenum loadings, reaction temperature, and sulfur substrates on the ODS performance were investigated in detail, and typical kinetic analyses of dibenzothiophene (DBT) oxidation were conducted, giving an apparent activation energy value of 50.2 kJ/mol. Owing to the structure confinement, Mo species can be well stabilized within the pores and cages of beta zeolite, and the distribution of which can be regulated by controlling the anchoring sites in the zeolite support to derive well-defined isolated dioxo Mo species. 1% Mo/beta exhibited remarkable oxidative desulfurization efficiency in the removal of heterocyclic sulfur compounds like DBT from the model fuel among all the catalysts tested. Typically, 99.3% of DBT could be oxidized to the corresponding sulfone within 120 min at 333 K. Moreover, 1% Mo/beta showed good recyclability and no obvious activity loss could be observed in five recycles, in significant contrast to poor cyclic stability of traditional Mo/SiO2 catalyst caused by the significant loss of Mo species during desulfurization reaction. Therefore, Mo/beta might be developed as efficient and stable ODS catalysts for future applications under mild reaction conditions.
  • 加载中
    1. [1]

      Eẞer, J.; Wasserscheid, P.; Jess, A. Green Chem. 2004, 6, 316.

    2. [2]

      Ismagilov, Z.; Yashnik, S.; Kerzhentsev, M.; Parmon, V.; Bourane, A.; Al-Shahrani, F. M.; Hajji, A. A.; Koseoglu, O. R. Catal. Rev. 2011, 53, 199.

    3. [3]

      Yang, X.-D.; Wang, X.-M.; Gao, S.-B. Acta Chim. Sinica 2017, 75, 479(in Chinese).

    4. [4]

      Li, X.-F.; Chen, L.; Xu, S.-C.; Zhao, W.-B. Acta Chim. Sinica 2019, 77, 1287(in Chinese).

    5. [5]

      Zhang, T.; Guo, C.; Wei, S.-X. Acta Chim. Sinica 2018, 76, 62(in Chinese).

    6. [6]

      Safa, M. A.; Bouresli, R.; Al-Majren, R.; Al-Shamary, T.; Ma, X. L. Fuel 2019, 239, 24.

    7. [7]

      Srivastava, V. C. RSC Adv. 2012, 2, 759.

    8. [8]

      Yang, G.-X.; Zhang, X.-Y.; Yang, H.-L.; Ma, J.-T. J. Colloid Interface Sci. 2018, 532, 92.

    9. [9]

      Zhang, D.-W.; Tao, H.-Z.; Yao, C.-Y.; Sun, Z.-S. Chem. Eng. Sci. 2017, 174, 203.

    10. [10]

      Xiao, X.; Zhong, H.; Zheng, C.-X.; Lu, M.-L.; Zuo, X.-X.; Nan, J.-M. Chem. Eng. J. 2016, 304, 908.

    11. [11]

      Prins, R.; Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J. Handbook of Heterogeneous Catalysis, Vol. 6, Wiley-VCH, Weinheim, 2008, pp. 2695-2718.

    12. [12]

      Chen, K.; Liu, N.; Zhang, M.-H.; Wang, D.-H. Appl. Catal. B 2017, 212, 32.

    13. [13]

      Chen, K.; Zhang, X.-M.; Yang, X.-F.; Jiao, M.-G.; Zhen, Z.; Zhang, M.-H.; Wang, D.-H; Bu, X.-H. Appl. Catal. B 2018, 238, 263.

    14. [14]

      Ghubayra, R.; Nuttall, C.; Hodgkiss, S.; Craven, M.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Appl. Catal. B 2019, 253, 309.

    15. [15]

      Zhang, Y.; Wang, R. Appl. Catal. B 2018, 234, 247.

    16. [16]

      Bryzhina, A. A.; Gantmanb, M. G.; Buryak, A. K.; Tarkhanova, I. G. Appl. Catal. B 2019, 257,117938.

    17. [17]

      Zhang, X.-M.; Zhang, Z.-H.; Zhang, B.-H.; Yang, X.-F.; Chang, X.; Zhou, Z.; Zhang, D.-H.; Zhang, M.-H.; Bu, X.-H. Appl. Catal. B 2019, 256, 117804.

    18. [18]

      Kulikov, L. A.; Akopyan, A. V.; Polikarpova, P. D.; Zolotukhina, A. V.; Maximov, A. L.; Anisimov, A. V.; Karakhanov, E. A. Ind. Eng. Chem. Res. 2019, 58, 20562.

    19. [19]

      Wu, L.; Miao, G.; Dai, X.; Dong, L.; Li, Z.; Xiao, J. Energy Fuel. 2019, 33, 7287.

    20. [20]

      Gonzalez, J.; Wang, J. A.; Chen, L.; Manriquez, M. E.; Dominguez, J. M. J. Phys. Chem. C 2017, 121, 23988.

    21. [21]

      Mokhtari, B.; Akbari, A.; Omidkhah, M. Energy Fuel. 2019, 33, 7276.

    22. [22]

      Yao, X.-Y.; Wang, C.; Liu, H.; Li, H.-P.; Wu, P.-W.; Fan, L.; Li, H.-M.; Zhu, W.-S. Ind. Eng. Chem. Res. 2019, 58, 863.

    23. [23]

      Wang, J.-S.; Wu, W.-P.; Ye, H.-Y.; Zhao, Y.-H.; Wang, W.-H.; Bao, M. RSC Adv. 2017, 7, 44827.

    24. [24]

      Hou, L.-P.; Zhao, R.-X.; Li, X.-P.; Gao, X.-H. Appl. Surf. Sci. 2018, 434, 1200.

    25. [25]

      Grünert, W.; Stakheev, A. Y.; Morke, W.; Feldhaus, R.; Anders, K.; Shpiro, E. S.; Minachev, K. M. J. Catal. 1992, 135, 269.

    26. [26]

      Grünert, W.; Stakheev, A. Y.; Morke, W.; Feldhaus, R.; Anders, K.; Shpiro, E. S.; Minachev, K. M. J. Catal. 1992, 135, 287.

    27. [27]

      Ookoshi, T.; Onaka, M. Chem. Commun. 1998, 21, 2399.

    28. [28]

      Handzlik, J.; Ogonowski, J. Catal. Lett. 2003, 88, 119.

    29. [29]

      Li, X.; Zhang, W.; Liu, S.; Han, X.; Xu, L.; Bao, X. J. Mol. Catal. A 2006, 250, 94.

    30. [30]

      Li, X.; Zhang, W.; Liu, S.; Xu, L.; Han, X.; Bao, X. J. Catal. 2007, 250, 55.

    31. [31]

      Li, X.; Zhang, W.; Liu, S.; Xu, L.; Han, X.; Bao, X. J. Phys. Chem. C 2008, 112, 5955.

    32. [32]

      Handzlik, J.; Sautet, P. J. Catal. 2008, 256, 1.

    33. [33]

      Debecker, D. P.; Bouchmella, K.; Poleunis, C.; Eloy, P.; Bertrand, P.; Gaigneaux, E. M.; Mutin, P. M. Chem. Mater. 2009, 21, 2817.

    34. [34]

      Debecker, D. P.; Schimmoeller, B.; Stoyanova, M.; Poleunis, C.; Bertrand, P.; Rodemerck, U.; Gaigneaux, E. M. J. Catal. 2011, 277, 154.

    35. [35]

      Debecker, D. P.; Stoyanova, M.; Colbeau-Justin, F.; Rodemerck, U.; Boissière, C.; Gaigneaux, E. M.; Sanchez C. Angew. Chem. Int. Ed. 2012, 51, 2129.

    36. [36]

      Lin, C.; Tao, K.; Yu, H.; Hua, D. Catal. Sci. Technol. 2014, 4, 4010.

    37. [37]

      Chen, K.; Xie, S.; Iglesia, E.; Bell, A. T. J. Catal. 2000, 189, 421.

    38. [38]

      Abello, M. C.; Gomez, M. F.; Casella, M.; Ferretti, O. A.; Bañares, M. A.; Fierro, J. L. G. Appl. Catal. A 2003, 251, 435.

    39. [39]

      Heracleous, E.; Lee, A. F.; Vasalos, I. A.; Lemonidou, A. A. Catal. Lett. 2003, 88, 47.

    40. [40]

      Heracleous, E.; Vakros, J.; Lemonidou, A. A.; Kordulis, C. Catal. Today 2004, 91-92, 289.

    41. [41]

      Christodoulakis, A.; Heracleous, E.; Lemonidou, A. A.; Boghosian, S. J. Catal. 2006, 242, 16.

    42. [42]

      Christodoulakis, A.; Boghosian, S. J. Catal. 2008, 260, 178.

    43. [43]

      Chung, J. S.; Miranda, R.; Bennett, C. O. J. Catal. 1988, 114, 398.

    44. [44]

      Banares, M.; Hu, H.; Wachs, I. E. J. Catal. 1994, 150, 407.

    45. [45]

      Jehng, J. M.; Hu, H. C.; Gao, X. T.; Wachs, I. E. Catal. Today 1996, 28, 335.

    46. [46]

      Liu, H.; Cheung, P.; Iglesia, E. J. Catal. 2003, 217, 222.

    47. [47]

      Liu, H.; Cheung, P.; Iglesia, E. J. Phys. Chem. B 2003, 107, 4118.

    48. [48]

      Xu, Y.; Lin, L. Appl. Catal. A 1999, 188, 53.

    49. [49]

      Ma, D.; Shu, Y.; Bao, X.; Xu, Y. J. Catal. 2000, 189, 314.

    50. [50]

      Liu, H.; Shen, W.; Bao, X.; Xu, Y. J. Mol. Catal. A 2006, 244, 229.

    51. [51]

      Tessonnier, J. P.; Louis, B.; Rigolet, S.; Ledoux, M. J.; Pham-Huu, C. Appl. Catal. A 2008, 336, 79.

    52. [52]

      Gao, J.; Zheng, Y.; Jehng, J.-M.; Tang, Y.; Wachs, I. E.; Podkolzin, S. G. Science 2015, 348, 686.

    53. [53]

      Martínez, A.; Peris, E. Appl. Catal. A 2016, 515, 32.

    54. [54]

      Mestl, G.; Srinivasan, T. K. K. Catal. Rev. Sci. Eng. 1998, 40, 451.

    55. [55]

      Chempath, S.; Zhang, Y.; Bell, A. T. J. Phys. Chem. C 2007, 111, 1291.

    56. [56]

      Williams, C. C.; Ekerdt, J. G.; Jehng, J. M.; Hardcastle, F. D.; Turek, A. M.; Wachs, I. E. J. Phys. Chem. 1991, 95, 8781.

    57. [57]

      Radhakrishnan, R.; Reed, C.; Oyama, S. T.; Seman, M.; Kondo, J. N.; Domen, K.; Ohminami, Y.; Asakura, K. J. Phys. Chem. B 2001, 105, 8519.

    58. [58]

      Tian, H.; Roberts, C. A.; Wachs, I. E. J. Phys. Chem. C 2010, 114, 14110.

    59. [59]

      Thielemann, J. P.; Ressler, T.; Walter, A.; Tzolova-Müller, A.; Hess, C. Appl. Catal. A 2011, 399, 28.

    60. [60]

      Tsilomelekis, G.; Boghosian, S. Catal. Sci. Technol. 2013, 3, 1869.

    61. [61]

      Tang, B.; Dai, W.-L.; Sun, X.-M.; Guan, N.-J.; Li, L.-D.; Hunger, M. Green Chem. 2014, 14, 2281.

    62. [62]

      Tang, B.; Dai, W.-L.; Wu, G.-J.; Guan, N.-J.; Li, L.-D.; Hunger, M. ACS Catal. 2014, 4, 2801.

    63. [63]

      Tang, B.; Dai, W.-L.; Sun, X.-M.; Wu, G.-J.; Guan, N.; Hunger, M.; Li, L.-D. Green Chem. 2015, 17, 1744.

    64. [64]

      Song, S.; Wu, G.-J.; Dai, W.-L.; Guan, N.-J.; Li, L.-D. Catal. Sci. Technol. 2016, 6, 8325.

    65. [65]

      Ravel, B.; Newville, M. J. Synchrotron Rad. 2005, 12, 537.

    66. [66]

      Srebowata, A.; Baran, R.; Lomot, D.; Lisovytskiy, D.; Onfroy, T.; Dzwigaj, S. Appl. Catal. B 2014, 147, 208.

    67. [67]

      Li, P.; Liu, G.; Wu, H.; Liu, Y.; Jiang, J.; Wu, P. J. Phys. Chem. C 2011, 115, 3663.

    68. [68]

      Dijkmans, J.; Gabriëls, D.; Dusselier, M.; Clippel, F.; Vanelderen, P.; Houthoofd, K.; Malfliet, A.; Pontikes, Y.; Sels, B. F. Green Chem. 2013, 15, 2777.

    69. [69]

      Hammond, C.; Conrad, S.; Hermans, I. Angew. Chem. Int. Ed. 2012, 51, 11736.

    70. [70]

      Higashimoto, S.; Hu, Y.; Tsumura, R.; Iino, K.; Matsuoka, M.; Yamashita, H.; Shul, Y. G.; Che, M.; Anpo, M. J. Catal. 2005, 235, 272.

    71. [71]

      Verbruggen, N. F. D.; Knözinger, H. Langmuir 1994, 10, 3148.

    72. [72]

      Amakawa, K.; Sun, L.; Guo, C.; Hävecker, M.; Kube, P.; Wachs, I. E.; Lwin, S.; Frenkel, A. I.; Patlolla, A.; Hermann, K.; Schlögl, R.; Trunschke, A. Angew. Chem. Int. Ed. 2013, 52, 13553.

    73. [73]

      Dzwigaj, S.; Millot, Y.; Krafft, J. M.; Popovych, N.; Kyriienko, P. J. Phys. Chem. C 2013, 117, 12552.

    74. [74]

      Fournier, M.; Louis, C.; Che, M.; Chaquin, P.; Masure, D. J. Catal. 1989, 119, 400.

    75. [75]

      Seyedmonir, S. R.; Howe, R. F. J. Catal. 1988, 110, 216.

    76. [76]

      Irurzun, V. M.; Tan, Y.; Resasco, D. E. Chem. Mater. 2009, 21, 2238.

    77. [77]

      Tauc, J. Amorphous and Liquid Semiconductors, Plenum, London, 1974.

    78. [78]

      Bazyari, A.; Khodadadi, A. A.; Mamaghani, A. H.; Beheshtian, J.; Thompson, L.; Mortazavi, Y. Appl. Catal. B 2016, 180, 65.

    79. [79]

      Otsuki, S.; Nonaka, T.; Takashima, N.; Qian, W.-H.; Ishihara, A.; Imai, T.; Kabe, T. Energy Fuels 2000, 14, 1232.

    80. [80]

      Ghubayra, R.; Nuttall, C.; Hodgkiss, S.; Craven, M.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Appl. Catal. B 2019, 253, 309.

    81. [81]

      Mokhtari, B.; Akbari, A.; Omidkhah, M. Energy Fuels 2019, 33, 7276.

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

Metrics
  • PDF Downloads(47)
  • Abstract views(4323)
  • HTML views(503)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return