Citation: Zhao Jiongpeng, Wang Weiwei, Han Songde, Li Quanwen, Li Na, Liu Fuchen, Bu Xianhe. Construction, Magnetic and Dielectric Properties of Mixed-Valence Iron Formate with Methylammonium Guest[J]. Acta Chimica Sinica, ;2020, 78(11): 1223-1228. doi: 10.6023/A20080341 shu

Construction, Magnetic and Dielectric Properties of Mixed-Valence Iron Formate with Methylammonium Guest

  • Corresponding author: Liu Fuchen, fcliu@tjut.edu.cn Bu Xianhe, buxh@nankai.edu.cn
  • Received Date: 2 August 2020
    Available Online: 16 September 2020

    Fund Project: the National Natural Science Foundation of China 21531005the National Natural Science Foundation of China 21871209the National Natural Science Foundation of China 21571139Project supported by the National Natural Science Foundation of China (Nos. 22035003, 21531005, 21871209, 21571139)the National Natural Science Foundation of China 22035003

Figures(4)

  • Although N-type ferrimagnets exhibit negative magnetization under positive magnetic fields, compounds that could maintain negative magnetization behavior under strong magnetic field (e.g. 1 T) are still rare. In this work, a mixed-valence metal-formate [CH3NH3]n[FeIIIFeII(HCO2)6]n (1) was constructed by the reaction of FeCl3·6H2O, formic acid and N-methyl formamide at 140 ℃ for two days. At room temperature, 1 crystallizes in the space group P31c, in which a three-dimensional anionic niccolite topological framework is constructed by FeII, FeIII ions, and anti, anti formate. The guest CH3NH3+ cations fill in the cavities of the framework as the charge balancer with the N atoms displaying threefold disorder and the atoms having a twofold disorder. The heat capacity measurement shows two different peaks, being the signatures of phase transitions. The change in heat capacity at 136 K corresponds to the phase transition triggered by the order-disorder phenomena of the CH3NH3+ cations. At low temperature phase, 1 has a symmetry of 2/m in space group C2/c, in which the threefold disorder of the N atoms of the CH3NH3+ was freezed. The order-disorder phase transition also results in dielectric relaxation in the temperature range 130~200 K at 500 Hz~1 MHz. The change of heat capacity at 40 K is associated with the ferromagnetic order of the antiferromagnetically coupled FeIII and FeII sublattices. 1 is a N-type ferrimagnet with negative magnetization below TN on cooling under the applied field, and thermo-driven magnetic poles reversal could be found in 1 with large applied field of 1 T. Furthermore, positive field regulated switchable magnetic dipoles switching of the magnetization, together with obvious huge positive exchange bias is also observed in 1. These results reveal the significant magnetic anisotropy in 1, and the guest in the framework not only can tune the structural phase transitions but also modulate the anisotropy of the host framework leading to different magnetism.
  • 加载中
    1. [1]

      Kahn, O. Nature 1999, 399, 21.  doi: 10.1038/19862

    2. [2]

      Kumar, A.; Yusuf, S. M. Phys. Rep. 2015, 556, 1.  doi: 10.1016/j.physrep.2014.10.003

    3. [3]

      Néel, L. Ann. Phys. 1984, 3, 137.

    4. [4]

      Markovich, V.; Fita, I.; Puzniak, R.; Martin, C.; Kikoin, K.; Wisniewski, A.; Hebert, S.; Maignan, A.; Gorodetsky, G. Phys. Rev. B 2006, 74, 174408.  doi: 10.1103/PhysRevB.74.174408

    5. [5]

      Ravi, P. S.; Tomy, C. V. J. Phys.:Condens. Matter. 2008, 20, 235209.  doi: 10.1088/0953-8984/20/23/235209

    6. [6]

      Ohkoshi, S.; Hashimoto, K. J. Am. Chem. Soc. 1999, 121, 10591.  doi: 10.1021/ja991473c

    7. [7]

      Ohkoshi, S.; Abe, Y.; Fujishima, A.; Hashimoto, K. Phys. Rev. Lett. 1999, 82, 1285.  doi: 10.1103/PhysRevLett.82.1285

    8. [8]

      (a) Nuttall, C. J.; Day, P. Chem. Mater. 1998, 10, 3050. (b) Day, P. Chem. Mater. 2003, 15, 2288. (c) Bhattacharjee, A. Chem. Mater. 2003, 15, 2287. (d) Tang, G.; He, Y.; Liang, F.; Li, S.; Huang, Y. Physica B 2007, 392, 337.

    9. [9]

      Fishman, R. S.; Reboredo, F. A. Phys. Rev. Lett. 2007, 99, 217203.  doi: 10.1103/PhysRevLett.99.217203

    10. [10]

      Zhao, J.-P.; Hu, B.-W.; Lloret, F.; Tao, J.; Yang, Q.; Zhang, X.-F.; Bu, X.-H. Inorg. Chem. 2010, 49, 10390.  doi: 10.1021/ic1014863

    11. [11]

      Cañadillas-Delgado, L.; Fabelo, O.; Rodríguez-Velamazán, J. A.; Lemée-Cailleau, M.-H.; Mason, S. A.; Pardo, E.; Lloret, F.; Zhao, J.-P.; Bu, X.-H.; Simonet, V.; Colin, C. V.; Rodríguez-Carvajal, J. J. Am. Chem. Soc. 2012, 134, 19772.  doi: 10.1021/ja3082457

    12. [12]

      (a) Zhao, J. P.; Xu, J.; Han, S. D.; Wang, Q. L.; Bu, X. H. Adv. Mater. 2017, 29, 1606966. (b) Mączka, M.; Ciupa, A.; Gągor, A.; Sieradzki, A.; Pikul, A.; Ptaka, M. J. Mater. Chem. C 2016, 4, 1186.

    13. [13]

      Zhao, J.-P.; Han, S.-D.; Jiang, X.; Liu, S.-J.; Zhao, R.; Chang, Z.; Bu, X.-H. Chem. Commun. 2015, 51, 8288.  doi: 10.1039/C5CC00915D

    14. [14]

      Zhao, J. P.; Han, S. D.; Liu, F. C. Inorg. Chem. 2019, 58, 1184.  doi: 10.1021/acs.inorgchem.8b02587

    15. [15]

      (a) Yu, Y.; Shang, R.; Chen, S.; Wang, B.-W.; Wang, Z.-M.; Gao, S. Chem. Eur. J. 2017, 23, 9857. (b) Shang, R.; Chen, S.; Hu, K.-L.; Wang, B.-W.; Wang, Z.-M.; Gao, S. Chem. Eur. J. 2016, 22, 6199. (c) Shang, R.; Xu, G.-C.; Wang, Z.-M.; Gao, S. Chem. Eur. J. 2014, 20, 1146.

    16. [16]

      (a) Zhao, Y.-H.; Liu, S.; Wang, B.-W.; Wang, Z.-M.; Gao, S. Chem. Eur. J. 2019, 25, 9303. (b) Sieradzkia, A.; Pawlus, S.; Tripathy, S. N.; Gągorc, A.; Ciupac, A.; Mączkac, M.; Paluch, M. Phys. Chem. Chem. Phys. 2016, 18, 8462.

    17. [17]

      (a) Brown, I. D.; Altermatt, D. Acta Crystallogr. 1985, B41, 244. (b) Brese, N. E.; O'Keeffe, M. Acta Crystallogr. 1991, B47, 192.

    18. [18]

      Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. SHAPE, Version 2.1, Universitat de Barcelona, Barcelona, Spain, 2013.

    19. [19]

      Zhao, J.-H.; Han, S.-D.; Jiang, X.; Liu, S.-J.; Zhao, R.; Chang, Z.; Bu, X.-H. Chem. Commun. 2015, 51, 8288.  doi: 10.1039/C5CC00915D

    20. [20]

      (a) Sun, Y.; Cong, J.-Z.; Chai, Y.-S.; Yan, L.-Q.; Zhao, Y.-L.; Wang, S.-G.; Ning, W.; Zhang, Y.-H. Appl. Phys. Lett. 2013, 102, 172406. (b) Bora, T.; Ravi, S. J. Magn. Magn. Mater. 2014, 358, 208. (c) Li, C.; Yan, T.; Chakrabarti, C.; Zhang, R.; Chen, X.; Fu, Q.; Yuan, S.; Barasa, G. O. J. Appl. Phys. 2018, 123, 093902.

  • 加载中
    1. [1]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    2. [2]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(0)
  • Abstract views(711)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return