Citation: Li Rongye, Mehul Khiman, Sheng Li, Sun Jing. pH/Solvent Tunable Hierarchical Nanostructures Assembled from an Amphiphilic Polypeptide-containing Triblock Copolymer[J]. Acta Chimica Sinica, ;2020, 78(11): 1235-1239. doi: 10.6023/A20080339 shu

pH/Solvent Tunable Hierarchical Nanostructures Assembled from an Amphiphilic Polypeptide-containing Triblock Copolymer

  • Corresponding author: Sun Jing, jingsun@qust.edu.cn
  • † These authors contributed equally to this work
  • Received Date: 1 August 2020
    Available Online: 4 September 2020

    Fund Project: the National Natural Science Foundation of China 21674054Project supported by the National Natural Science Foundation of China (Nos. 51722302 and 21674054) and the Natural Science Foundation of Shandong Province (No. ZR2019JQ17)the National Natural Science Foundation of China 51722302the Natural Science Foundation of Shandong Province ZR2019JQ17

Figures(6)

  • Similar to natural proteins, polypeptides can form secondary structures depending on their physical properties. Many efforts have been made towards the self-assembly of triblock copolymer containing polypeptide as an important component to construct hierarchical structures by utilizing the pH-responsive conformation transformation. In this work, a pH-responsive poly(ethylene glycol)-b-poly(L-lysine)-b-poly(styrene) (PEG-b-PLL-b-PS) triblock copolymer was prepared via a combination of controlled ring opening polymerization (ROP) and atom transfer radical polymerization (ATRP). In the triblock copolymer, PLL is water-soluble in acidic solution with random coil conformation, but becomes insoluble helix in alkaline solution. PEG has excellent water solubility that can exhibit protein-resistant property. PS serves as hydrophobic part. Self-assembly of the polymer was examined by transmission electron microscopy (TEM), atomic force microscopy (AFM) and attenuated total reflection-infrared spectrometer (ATR-IR). The triblock copolymer forms spherical micelles in 1:1 volume ratio of tetrahydrofuran-water mixed solvent, in which the hydrophobic PS segment forms a core and the two hydrophilic segments PLL and PEG serve as shell and corona, respectively. The spheres as the subunits further transform into hierarchical 1D fiber-like structure in the presence of THF after 7 d of aging, confirmed by both TEM and AFM techniques. Upon removing THF, the spherical shape was re-obtained with slightly smaller diameter, so called "frozen micelles". Further, the diameter of the spheres increases with pH increasing. A sphere-to-vesicle transition was observed at pH 13 as the secondary conformation of PLL transforms from coil to α-helix. The dialysis of these solutions can convert the vesicles back into spherical morphology with slightly smaller diameter.
  • 加载中
    1. [1]

      Mai, Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 5969.  doi: 10.1039/c2cs35115c

    2. [2]

      Qiu, H.; Gao, Y.; Boott, C. E.; Gould, O. E. C.; Harniman, R. L.; Miles, M. J.; Webb, S. E. D.; Winnik, M. A.; Manners, I. Science 2016, 352, 697.  doi: 10.1126/science.aad9521

    3. [3]

      Qiu, H.; Hudson, Z. M.; Winnik, M. A.; Manners, I. Science 2015, 347, 1329.  doi: 10.1126/science.1261816

    4. [4]

      Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schacher, F. H.; Schmalz, H.; Müller, A. H. Nature 2013, 503, 247.  doi: 10.1038/nature12610

    5. [5]

      Xu, X.; Wu, G.; Zhang, J.; Wang, Y.; Fan, Y.; Ma, J. Acta Chim. Sinica 2008, 66, 1102(in Chinese).
       

    6. [6]

      Cademartiri, L.; Bishop, K. J. M. Nat. Mater. 2015, 14, 2.  doi: 10.1038/nmat4184

    7. [7]

      Walther, A.; Müller, A. H. Chem. Rev. 2013, 113, 5194.  doi: 10.1021/cr300089t

    8. [8]

      Movassaghian, S.; Merkel, O. M.; Torchilin, V. P. Wiley Interdiplinary Reviews Nanomedicine & Nanobiotechnology 2015, 7, 691.

    9. [9]

      Jiang, J.; Shen, N.; Ci, T.; Tang, Z.; Gu, Z.; Li, G.; Chen, X. Adv. Mater. 2019, 31, 1.

    10. [10]

      Li, Z.; Kesselman, E.; Talmon, Y.; Hillmyer, M. A.; Lodge, T. P. Science 2004, 306, 98.  doi: 10.1126/science.1103350

    11. [11]

      Kubowicz, S.; Baussard, J. F.; Lutz, J. F.; Thünemann, A. F.; Berlepsch, H. V.; Laschewsky, A. Angew. Chem. Int. Ed. 2005, 44, 5262.  doi: 10.1002/anie.200500584

    12. [12]

      Gröschel, A. H.; Schacher, F. H.; Schmalz, H.; Borisov, O. V.; Zhulina, E. B.; Walther, A.; Müller, A. H. Nat. Commun. 2012, 3, 710.  doi: 10.1038/ncomms1707

    13. [13]

      Zhuang, Z.; Jiang, T.; Lin, J.; Gao, L.; Yang, C.; Wang, L.; Cai, C. Angew. Chem. Int. Ed. 2016, 55, 12522.  doi: 10.1002/anie.201607059

    14. [14]

      Zhang, L.; Eisenberg, A. Science 1995, 268, 1728.  doi: 10.1126/science.268.5218.1728

    15. [15]

      Hadjichristidis, N.; Hirao, A.; Tezuka, Y.; Prez, F. D. Wiley InterScience, John Wiley & Sons Inc., New York, 2011, p. 823.

    16. [16]

      Zhang, J.; Chen, X.; Wei, H.; Wan, X. Chem. Soc. Rev. 2013, 42, 9127.  doi: 10.1039/c3cs60192g

    17. [17]

      Chen, P.; Qiu, M.; Deng, C.; Meng, F.; Zhang, J.; Cheng, R.; Zhong, Z. Biomacromolecules 2015, 16, 1322.  doi: 10.1021/acs.biomac.5b00113

    18. [18]

      Ran, M.; Shi, D.; Dong, H.; Chen, M.; Zhao, Z. Acta Chim. Sinica 2015, 73, 1047(in Chinese).
       

    19. [19]

      Sheng, L.; Chen, H.; Fu, W.; Li, Z. Acta Polym. Sinica 2015, 8, 982(in Chinese).
       

    20. [20]

      Sheng, L.; Chen, H.; Fu, W.; Li, Z. Langmuir 2015, 31, 11964.  doi: 10.1021/acs.langmuir.5b02417

    21. [21]

      Boott, C. E.; Gwyther, J.; Harniman, R. L.; Hayward, D. W.; Manners, I. Nat. Chem. 2017, 9, 785.  doi: 10.1038/nchem.2721

    22. [22]

      Yu, K.; Eisenberg, A. Macromolecules 1996, 29, 6359.  doi: 10.1021/ma960381u

    23. [23]

      Betthausen, E.; Hanske, C.; Müller, M.; Fery, A.; Schacher, F. H.; Müller, A. H. E.; Pochan, D. J. Macromolecules 2014, 47, 1672.  doi: 10.1021/ma402555c

    24. [24]

      Zhang, S.; Li, Q.; Lin, J.; Cai, C.; Wang, L. Acta Polym. Sinica 2017, 2, 294(in Chinese).
       

    25. [25]

      Bhargava, P.; Tu, Y.; Zheng, J.; Xiong, H.; Quirk, R. P.; Cheng, S. Z. D. J. Am. Chem. Soc. 2007, 129, 1113.  doi: 10.1021/ja0653019

    26. [26]

      Özdemir, C.; Güner, A. Eur. Polym. J. 2007, 43, 3068.  doi: 10.1016/j.eurpolymj.2007.02.022

    27. [27]

      Rozenberg, M.; Shoham, G. Biophys. Chem. 2007, 125, 166.  doi: 10.1016/j.bpc.2006.07.008

    28. [28]

      Prestrelski, S. J.; Tedeschi, N.; Arakawa, T.; Carpenter, J. F. Biophys. J. 1993, 65, 661.  doi: 10.1016/S0006-3495(93)81120-2

    29. [29]

      Mauerer, A.; Lee, G. Eur. J. Pharm. Sci. 2006, 62, 131.

    30. [30]

      Jain, S.; Bates, F. S. Macromolecules 2004, 37, 1511.  doi: 10.1021/ma035467j

    31. [31]

      Rager, T.; Meyer, W. H.; Wegner, G. Macromol. Chem. Phys. 1999, 200, 1672.  doi: 10.1002/(SICI)1521-3935(19990701)200:7<1672::AID-MACP1672>3.0.CO;2-V

    32. [32]

      Stam, J. V.; Creutz, S.; Schryver, F. C. D.; Jérôme, R. Macromolecules 2000, 33, 6388.  doi: 10.1021/ma992174a

    33. [33]

      Zhang, L.; Barlow, R. J.; Eisenberg, A. Macromolecules 1995, 28, 6055.  doi: 10.1021/ma00122a010

    34. [34]

      Tuzar, Z.; Kratochvil, P. Surf. Colloid Sci. 1993, 15, 1.

    35. [35]

      Munk, P. Solvents and Self-Organization of Polymers, Springer, Netherlands, New York, 1996, p. 19.

    36. [36]

      Zhang, Y.; Jiang, M.; Zhao, J.; Wang, Z.; Dou, H.; Chen, D. Langmuir 2005, 21, 1531.  doi: 10.1021/la047912p

    37. [37]

      Lei, L.; Gohy, J.; Willet, N.; Zhang, J.; Varshney, S.; Jérôme, R. Macromolecules 2004, 37, 1089.  doi: 10.1021/ma034255j

    38. [38]

      Jada, A.; Hurtrez, G.; Siffert, B.; Riess, G. Macromol. Chem. Phys 1996, 197, 3697.  doi: 10.1002/macp.1996.021971117

    39. [39]

      Zhang, L.; Yu, K.; Eisenberg, A. Science 1996, 272, 1777.  doi: 10.1126/science.272.5269.1777

    40. [40]

      Ray, J. G.; Naik, S. S.; Hoff, E. A.; Johnson, A. J.; Ly, J. T.; Easterling, C. P.; Patton, D. L.; Savin, D. A. Macromol. Chem. Phys. 2012, 33, 819.

    41. [41]

      Naik, S. S.; Ray, J. G.; Savin, D. A. Langmuir 2011, 27, 7231.  doi: 10.1021/la200882f

    42. [42]

      Zhang, W.; He, J.; Liu, Z.; Ni, P.; Zhu, X. J. Polym. Sci. Part A:Polym. Chem. 2010, 48, 1079.  doi: 10.1002/pola.23863

    43. [43]

      Jackson, M.; Mantsch, H. H. Crit. Rev. Biochem. Mol. 1995, 30, 95.  doi: 10.3109/10409239509085140

    44. [44]

      Dzwolak, W.; Smirnovas, V. Biophys. Chem. 2005, 115, 49.  doi: 10.1016/j.bpc.2005.01.003

    45. [45]

      Mirtič, A.; Grdadolnik, J. Biophys. Chem. 2013, 175-176, 47.  doi: 10.1016/j.bpc.2013.02.004

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    10. [10]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    16. [16]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    17. [17]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    18. [18]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    19. [19]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(7)
  • Abstract views(1014)
  • HTML views(196)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return