Citation: Li Rongye, Mehul Khiman, Sheng Li, Sun Jing. pH/Solvent Tunable Hierarchical Nanostructures Assembled from an Amphiphilic Polypeptide-containing Triblock Copolymer[J]. Acta Chimica Sinica, ;2020, 78(11): 1235-1239. doi: 10.6023/A20080339 shu

pH/Solvent Tunable Hierarchical Nanostructures Assembled from an Amphiphilic Polypeptide-containing Triblock Copolymer

  • Corresponding author: Sun Jing, jingsun@qust.edu.cn
  • † These authors contributed equally to this work
  • Received Date: 1 August 2020
    Available Online: 4 September 2020

    Fund Project: the National Natural Science Foundation of China 21674054Project supported by the National Natural Science Foundation of China (Nos. 51722302 and 21674054) and the Natural Science Foundation of Shandong Province (No. ZR2019JQ17)the National Natural Science Foundation of China 51722302the Natural Science Foundation of Shandong Province ZR2019JQ17

Figures(6)

  • Similar to natural proteins, polypeptides can form secondary structures depending on their physical properties. Many efforts have been made towards the self-assembly of triblock copolymer containing polypeptide as an important component to construct hierarchical structures by utilizing the pH-responsive conformation transformation. In this work, a pH-responsive poly(ethylene glycol)-b-poly(L-lysine)-b-poly(styrene) (PEG-b-PLL-b-PS) triblock copolymer was prepared via a combination of controlled ring opening polymerization (ROP) and atom transfer radical polymerization (ATRP). In the triblock copolymer, PLL is water-soluble in acidic solution with random coil conformation, but becomes insoluble helix in alkaline solution. PEG has excellent water solubility that can exhibit protein-resistant property. PS serves as hydrophobic part. Self-assembly of the polymer was examined by transmission electron microscopy (TEM), atomic force microscopy (AFM) and attenuated total reflection-infrared spectrometer (ATR-IR). The triblock copolymer forms spherical micelles in 1:1 volume ratio of tetrahydrofuran-water mixed solvent, in which the hydrophobic PS segment forms a core and the two hydrophilic segments PLL and PEG serve as shell and corona, respectively. The spheres as the subunits further transform into hierarchical 1D fiber-like structure in the presence of THF after 7 d of aging, confirmed by both TEM and AFM techniques. Upon removing THF, the spherical shape was re-obtained with slightly smaller diameter, so called "frozen micelles". Further, the diameter of the spheres increases with pH increasing. A sphere-to-vesicle transition was observed at pH 13 as the secondary conformation of PLL transforms from coil to α-helix. The dialysis of these solutions can convert the vesicles back into spherical morphology with slightly smaller diameter.
  • 加载中
    1. [1]

      Mai, Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 5969.  doi: 10.1039/c2cs35115c

    2. [2]

      Qiu, H.; Gao, Y.; Boott, C. E.; Gould, O. E. C.; Harniman, R. L.; Miles, M. J.; Webb, S. E. D.; Winnik, M. A.; Manners, I. Science 2016, 352, 697.  doi: 10.1126/science.aad9521

    3. [3]

      Qiu, H.; Hudson, Z. M.; Winnik, M. A.; Manners, I. Science 2015, 347, 1329.  doi: 10.1126/science.1261816

    4. [4]

      Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schacher, F. H.; Schmalz, H.; Müller, A. H. Nature 2013, 503, 247.  doi: 10.1038/nature12610

    5. [5]

      Xu, X.; Wu, G.; Zhang, J.; Wang, Y.; Fan, Y.; Ma, J. Acta Chim. Sinica 2008, 66, 1102(in Chinese).
       

    6. [6]

      Cademartiri, L.; Bishop, K. J. M. Nat. Mater. 2015, 14, 2.  doi: 10.1038/nmat4184

    7. [7]

      Walther, A.; Müller, A. H. Chem. Rev. 2013, 113, 5194.  doi: 10.1021/cr300089t

    8. [8]

      Movassaghian, S.; Merkel, O. M.; Torchilin, V. P. Wiley Interdiplinary Reviews Nanomedicine & Nanobiotechnology 2015, 7, 691.

    9. [9]

      Jiang, J.; Shen, N.; Ci, T.; Tang, Z.; Gu, Z.; Li, G.; Chen, X. Adv. Mater. 2019, 31, 1.

    10. [10]

      Li, Z.; Kesselman, E.; Talmon, Y.; Hillmyer, M. A.; Lodge, T. P. Science 2004, 306, 98.  doi: 10.1126/science.1103350

    11. [11]

      Kubowicz, S.; Baussard, J. F.; Lutz, J. F.; Thünemann, A. F.; Berlepsch, H. V.; Laschewsky, A. Angew. Chem. Int. Ed. 2005, 44, 5262.  doi: 10.1002/anie.200500584

    12. [12]

      Gröschel, A. H.; Schacher, F. H.; Schmalz, H.; Borisov, O. V.; Zhulina, E. B.; Walther, A.; Müller, A. H. Nat. Commun. 2012, 3, 710.  doi: 10.1038/ncomms1707

    13. [13]

      Zhuang, Z.; Jiang, T.; Lin, J.; Gao, L.; Yang, C.; Wang, L.; Cai, C. Angew. Chem. Int. Ed. 2016, 55, 12522.  doi: 10.1002/anie.201607059

    14. [14]

      Zhang, L.; Eisenberg, A. Science 1995, 268, 1728.  doi: 10.1126/science.268.5218.1728

    15. [15]

      Hadjichristidis, N.; Hirao, A.; Tezuka, Y.; Prez, F. D. Wiley InterScience, John Wiley & Sons Inc., New York, 2011, p. 823.

    16. [16]

      Zhang, J.; Chen, X.; Wei, H.; Wan, X. Chem. Soc. Rev. 2013, 42, 9127.  doi: 10.1039/c3cs60192g

    17. [17]

      Chen, P.; Qiu, M.; Deng, C.; Meng, F.; Zhang, J.; Cheng, R.; Zhong, Z. Biomacromolecules 2015, 16, 1322.  doi: 10.1021/acs.biomac.5b00113

    18. [18]

      Ran, M.; Shi, D.; Dong, H.; Chen, M.; Zhao, Z. Acta Chim. Sinica 2015, 73, 1047(in Chinese).
       

    19. [19]

      Sheng, L.; Chen, H.; Fu, W.; Li, Z. Acta Polym. Sinica 2015, 8, 982(in Chinese).
       

    20. [20]

      Sheng, L.; Chen, H.; Fu, W.; Li, Z. Langmuir 2015, 31, 11964.  doi: 10.1021/acs.langmuir.5b02417

    21. [21]

      Boott, C. E.; Gwyther, J.; Harniman, R. L.; Hayward, D. W.; Manners, I. Nat. Chem. 2017, 9, 785.  doi: 10.1038/nchem.2721

    22. [22]

      Yu, K.; Eisenberg, A. Macromolecules 1996, 29, 6359.  doi: 10.1021/ma960381u

    23. [23]

      Betthausen, E.; Hanske, C.; Müller, M.; Fery, A.; Schacher, F. H.; Müller, A. H. E.; Pochan, D. J. Macromolecules 2014, 47, 1672.  doi: 10.1021/ma402555c

    24. [24]

      Zhang, S.; Li, Q.; Lin, J.; Cai, C.; Wang, L. Acta Polym. Sinica 2017, 2, 294(in Chinese).
       

    25. [25]

      Bhargava, P.; Tu, Y.; Zheng, J.; Xiong, H.; Quirk, R. P.; Cheng, S. Z. D. J. Am. Chem. Soc. 2007, 129, 1113.  doi: 10.1021/ja0653019

    26. [26]

      Özdemir, C.; Güner, A. Eur. Polym. J. 2007, 43, 3068.  doi: 10.1016/j.eurpolymj.2007.02.022

    27. [27]

      Rozenberg, M.; Shoham, G. Biophys. Chem. 2007, 125, 166.  doi: 10.1016/j.bpc.2006.07.008

    28. [28]

      Prestrelski, S. J.; Tedeschi, N.; Arakawa, T.; Carpenter, J. F. Biophys. J. 1993, 65, 661.  doi: 10.1016/S0006-3495(93)81120-2

    29. [29]

      Mauerer, A.; Lee, G. Eur. J. Pharm. Sci. 2006, 62, 131.

    30. [30]

      Jain, S.; Bates, F. S. Macromolecules 2004, 37, 1511.  doi: 10.1021/ma035467j

    31. [31]

      Rager, T.; Meyer, W. H.; Wegner, G. Macromol. Chem. Phys. 1999, 200, 1672.  doi: 10.1002/(SICI)1521-3935(19990701)200:7<1672::AID-MACP1672>3.0.CO;2-V

    32. [32]

      Stam, J. V.; Creutz, S.; Schryver, F. C. D.; Jérôme, R. Macromolecules 2000, 33, 6388.  doi: 10.1021/ma992174a

    33. [33]

      Zhang, L.; Barlow, R. J.; Eisenberg, A. Macromolecules 1995, 28, 6055.  doi: 10.1021/ma00122a010

    34. [34]

      Tuzar, Z.; Kratochvil, P. Surf. Colloid Sci. 1993, 15, 1.

    35. [35]

      Munk, P. Solvents and Self-Organization of Polymers, Springer, Netherlands, New York, 1996, p. 19.

    36. [36]

      Zhang, Y.; Jiang, M.; Zhao, J.; Wang, Z.; Dou, H.; Chen, D. Langmuir 2005, 21, 1531.  doi: 10.1021/la047912p

    37. [37]

      Lei, L.; Gohy, J.; Willet, N.; Zhang, J.; Varshney, S.; Jérôme, R. Macromolecules 2004, 37, 1089.  doi: 10.1021/ma034255j

    38. [38]

      Jada, A.; Hurtrez, G.; Siffert, B.; Riess, G. Macromol. Chem. Phys 1996, 197, 3697.  doi: 10.1002/macp.1996.021971117

    39. [39]

      Zhang, L.; Yu, K.; Eisenberg, A. Science 1996, 272, 1777.  doi: 10.1126/science.272.5269.1777

    40. [40]

      Ray, J. G.; Naik, S. S.; Hoff, E. A.; Johnson, A. J.; Ly, J. T.; Easterling, C. P.; Patton, D. L.; Savin, D. A. Macromol. Chem. Phys. 2012, 33, 819.

    41. [41]

      Naik, S. S.; Ray, J. G.; Savin, D. A. Langmuir 2011, 27, 7231.  doi: 10.1021/la200882f

    42. [42]

      Zhang, W.; He, J.; Liu, Z.; Ni, P.; Zhu, X. J. Polym. Sci. Part A:Polym. Chem. 2010, 48, 1079.  doi: 10.1002/pola.23863

    43. [43]

      Jackson, M.; Mantsch, H. H. Crit. Rev. Biochem. Mol. 1995, 30, 95.  doi: 10.3109/10409239509085140

    44. [44]

      Dzwolak, W.; Smirnovas, V. Biophys. Chem. 2005, 115, 49.  doi: 10.1016/j.bpc.2005.01.003

    45. [45]

      Mirtič, A.; Grdadolnik, J. Biophys. Chem. 2013, 175-176, 47.  doi: 10.1016/j.bpc.2013.02.004

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    3. [3]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(4)
  • Abstract views(833)
  • HTML views(170)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return