Citation: Peng Wei, Qi Peiyao, Dong Kaixuan, He Aihua. Oligomerization and Polymerization of Isoprene Catalyzed by Alkylaluminium with Different Structures[J]. Acta Chimica Sinica, ;2020, 78(12): 1418-1425. doi: 10.6023/A20070336 shu

Oligomerization and Polymerization of Isoprene Catalyzed by Alkylaluminium with Different Structures

  • Corresponding author: He Aihua, ahhe@qust.edu.cn; aihuahe@iccas.ac.cn
  • Received Date: 30 July 2020
    Available Online: 9 October 2020

    Fund Project: Project supported by the Major Scientific and Technological lnnovation Project of Shandong Province(No.2019JZZY010352) and Taishan Scholar Programthe Major Scientific and Technological lnnovation Project of Shandong Province 2019JZZY010352

Figures(8)

  • Alkylaluminium (AlR3), as co-catalyst component in Ziegler-Natta catalytic system, plays important roles in the alkylation, forming and changing the structure and concentration of active centers through the reduction and reversible adsorption-desorption reactions with the metal compound of the catalyst, acting as chain transfer agent, etc. However, the alkylaluminium itself do have the catalytic effect on the conjugated diene monomers. In this article, alkylaluminium with different structures such as triethylaluminium (AlEt3), triisobutylaluminium (Al(i-Bu)3), diisobutylaluminium hydride (AlH(i-Bu)2), diethylaluminium chloride (AlEt2Cl), ethylaluminium dichloride (AlEtCl2) were used to catalyze isoprene oligomerization and polymerization. The effects of the structure and concentration of alkylaluminiums (n(Al)/n(M)=7×10-5, 35×10-5, 350×10-5, 1050×10-5) on the catalytic behaviors of isoprene were studied. The microstructure (trans-1, 4 and cis-1, 4), molecular weight and molecular weight distribution of the products were characterized by 1H nuclear magnetic resonance spectroscopy (1H NMR), gel permeation chromatography (GPC) and gas chromatography-mass spectrometry (GC-MS). It was found that alkylaluminium could initiate oligomerization and cationic polymerization of isoprene under the minor incorporation of H2O, which were affected greatly by the structure and concentration of alkylaluminium. Using AlEtCl2 led to the highest catalytic activity and produced products containing more linear polymers with mixed cis-1, 4/trans-1, 4 structures when n(Al)/n(M)=1050×10-5. The Al(i-Bu)3 and AlH(i-Bu)2 didn't have basically cation initiation ability, which led to isoprene oligomerization. The alkylaluminium with n(Al)/n(M) ≤ 350×10-5 had negligible influence on the isoprene polymerization and oligomerization. And lower or higher alkylaluminium concentration were not beneficial to obtain polyisoprene with high molecular weight. The catalytic mechanism of alkylaluminium on isoprene was discussed, which provided a further understanding on the catalytic behavior of alkylaluminium components in Ziegler-Natta catalyst and the effect of alkylaluminium on polymers.
  • 加载中
    1. [1]

      Mori, H.; Hasebe, K.; Terano, M. Polymer 1999, 40, 1389.

    2. [2]

      Yang, H. R.; Zhang, L. T.; Zang, D. D.; Fu, Z. S.; Fan, Z. Q. Catal. Commun. 2015, 62, 104.

    3. [3]

      Bahri-Laleh, N.; Correa, A.; Mehdipour-Ataei, S.; Arabi, H.; Haghighi, M. N.; Zohuri, G.; Cavallo, L. Macromolecules 2011, 44, 778.

    4. [4]

      Liu, B. P.; Nitta, T.; Nakatani, H.; Terano, M. Macromol. Chem. Phys. 2002, 203, 2412.

    5. [5]

      Liu, B. P.; Nitta, T.; Nakatani, H.; Terano, M. Macromol. Chem. Phys. 2003, 204, 395.

    6. [6]

      Liu, B. P.; Nitta, T.; Nakatani, H.; Terano, M. Macromol. Symp. 2004, 213, 7.

    7. [7]

      Potapov, A. G.; Terskikh, V. V.; Zakharov, V. A.; Bukatov, G. D. J. Mol. Catal. A:Chem. 1999, 145, 147.

    8. [8]

      Potapov, A. G.; Terskikh, V. V.; Bukatov, G. D.; Zakharov, V. A. J. Mol. Catal. A:Chem. 2000, 158, 457.

    9. [9]

      Hu, J.; Han, B.; Shen, X. R.; Fu, Z. S.; Fan, Z. Q. Chin. J. Polym. Sci. 2013, 31, 583.

    10. [10]

      Franceschini, F. C.; Tavares, T. T. D. R.; Greco, P. P.; Galland, G. B.; dos Santos, J. H.; Soares, J. B. J. Appl. Polym. Sci. 2005, 95, 1050.

    11. [11]

      Rocha, T. C. J.; Coutinho, F. M. B.; Soares, B. G. Polym. Bull. 2009, 62, 1.

    12. [12]

      Gao, H.; Liu, X.; Tang, Y.; Pan, J.; Wu, Q. Polym. Chem. 2011, 2, 1398.

    13. [13]

      Huang, W. Q.; Yang, L.; Zhao, X.; Man, Y.; Li, B. Y.; Zhang, Y.; Yang, W. T. Chem. Ind. & Eng. Pro. 2011, 30, 1231(in Chinese).

    14. [14]

      Blaakmeer, E. S. M.; van Eck, E. R. H.; Kentgens, A. P. M. Phys. Chem. Chem. Phys. 2018, 20, 7974.

    15. [15]

      Niu, Q. T.; Zhang, J. Y.; Peng, W.; Fan, Z. Q.; He, A. H. Mol. Catal. 2019, 471, 1.

    16. [16]

      Richardson, W. S. J. Polym. Sci. 1954, 13, 325.

    17. [17]

      Ferington, T. E.; Tobolsky, A. V. J. Polym. Sci. 1958, 31, 25.

    18. [18]

      Dolgoplosk, B.; Belonovskaia, G. P.; Boldyreva, I. I.; Nelson, K. V.; Kropacheva, E. N.; Rosinoer, J. M.; Chernova, J. D. J. Polym. Sci. 1961, 53, 209.

    19. [19]

      Kennedy, J. P.; Squires, R. G. Polymer 1965, 6, 579.

    20. [20]

      Binder, J. L. J. Polym. Sci. Part A:Gen. Pap. 1963, 1, 37.

    21. [21]

      Kössler, I.; Vodehnal, J.; Štolka, M. J. Polym. Sci. Part A:Gen. Pap. 1965, 3, 2081.

    22. [22]

      Pétiaud, R.; Taärit, Y. B. J. Chem. Soc. 1980, 10, 1385.

    23. [23]

      Peng, Y. X.; Deng, Y. G.; Liu, J. L.; Dai, H. S.; Cun, L. F. Polym. Mater. Sci. Eng. 1997, 13, 95(in Chinese).

    24. [24]

      Gaylord, N. G.; Matyska, B.; Mach, K.; Vodehnal, J. J. Polym. Sci. Pol. Chem. 1966, 4, 2493.

    25. [25]

      Gaylord, N. G.; Kössler, I.; Matyska, B.; Mach, K. J. Polym. Sci. Pol. Chem. 1968, 6, 125.

    26. [26]

      Matyska, B.; Doležal, I.; Kössler, I. Collect. Czech. Chem. C 1971, 36, 2924.

    27. [27]

      Uchida, Y.; Furuhata, K. I.; Ishiwata, H. Bull. Chem. Soc. Jpn. 1971, 44, 1118.

    28. [28]

      Akutagawa, S.; Taketomi, T.; Otsuka, S. Chem. Lett. 1976, 5, 485.

    29. [29]

      Shen, G. L. Journal of Liaoyang Petrochemical College 1996, 12, 1(in Chinese).

    30. [30]

      Yu, S. J. Speciality Petrochemicals 2000, (2), 20(in Chinese).

    31. [31]

      Shen, G. L.; Tang, L. H. Speciality Petrochemicals 2004, (1), 17(in Chinese).

    32. [32]

      Xia, S. W.; Xia, S. W.; Ma, S. X. Acta Polym. Sinica 1998, (3), 262(in Chinese).

  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    15. [15]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    16. [16]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(35)
  • Abstract views(3220)
  • HTML views(420)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return