Citation: Peng Wei, Qi Peiyao, Dong Kaixuan, He Aihua. Oligomerization and Polymerization of Isoprene Catalyzed by Alkylaluminium with Different Structures[J]. Acta Chimica Sinica, ;2020, 78(12): 1418-1425. doi: 10.6023/A20070336 shu

Oligomerization and Polymerization of Isoprene Catalyzed by Alkylaluminium with Different Structures

  • Corresponding author: He Aihua, ahhe@qust.edu.cn; aihuahe@iccas.ac.cn
  • Received Date: 30 July 2020
    Available Online: 9 October 2020

    Fund Project: Project supported by the Major Scientific and Technological lnnovation Project of Shandong Province(No.2019JZZY010352) and Taishan Scholar Programthe Major Scientific and Technological lnnovation Project of Shandong Province 2019JZZY010352

Figures(8)

  • Alkylaluminium (AlR3), as co-catalyst component in Ziegler-Natta catalytic system, plays important roles in the alkylation, forming and changing the structure and concentration of active centers through the reduction and reversible adsorption-desorption reactions with the metal compound of the catalyst, acting as chain transfer agent, etc. However, the alkylaluminium itself do have the catalytic effect on the conjugated diene monomers. In this article, alkylaluminium with different structures such as triethylaluminium (AlEt3), triisobutylaluminium (Al(i-Bu)3), diisobutylaluminium hydride (AlH(i-Bu)2), diethylaluminium chloride (AlEt2Cl), ethylaluminium dichloride (AlEtCl2) were used to catalyze isoprene oligomerization and polymerization. The effects of the structure and concentration of alkylaluminiums (n(Al)/n(M)=7×10-5, 35×10-5, 350×10-5, 1050×10-5) on the catalytic behaviors of isoprene were studied. The microstructure (trans-1, 4 and cis-1, 4), molecular weight and molecular weight distribution of the products were characterized by 1H nuclear magnetic resonance spectroscopy (1H NMR), gel permeation chromatography (GPC) and gas chromatography-mass spectrometry (GC-MS). It was found that alkylaluminium could initiate oligomerization and cationic polymerization of isoprene under the minor incorporation of H2O, which were affected greatly by the structure and concentration of alkylaluminium. Using AlEtCl2 led to the highest catalytic activity and produced products containing more linear polymers with mixed cis-1, 4/trans-1, 4 structures when n(Al)/n(M)=1050×10-5. The Al(i-Bu)3 and AlH(i-Bu)2 didn't have basically cation initiation ability, which led to isoprene oligomerization. The alkylaluminium with n(Al)/n(M) ≤ 350×10-5 had negligible influence on the isoprene polymerization and oligomerization. And lower or higher alkylaluminium concentration were not beneficial to obtain polyisoprene with high molecular weight. The catalytic mechanism of alkylaluminium on isoprene was discussed, which provided a further understanding on the catalytic behavior of alkylaluminium components in Ziegler-Natta catalyst and the effect of alkylaluminium on polymers.
  • 加载中
    1. [1]

      Mori, H.; Hasebe, K.; Terano, M. Polymer 1999, 40, 1389.

    2. [2]

      Yang, H. R.; Zhang, L. T.; Zang, D. D.; Fu, Z. S.; Fan, Z. Q. Catal. Commun. 2015, 62, 104.

    3. [3]

      Bahri-Laleh, N.; Correa, A.; Mehdipour-Ataei, S.; Arabi, H.; Haghighi, M. N.; Zohuri, G.; Cavallo, L. Macromolecules 2011, 44, 778.

    4. [4]

      Liu, B. P.; Nitta, T.; Nakatani, H.; Terano, M. Macromol. Chem. Phys. 2002, 203, 2412.

    5. [5]

      Liu, B. P.; Nitta, T.; Nakatani, H.; Terano, M. Macromol. Chem. Phys. 2003, 204, 395.

    6. [6]

      Liu, B. P.; Nitta, T.; Nakatani, H.; Terano, M. Macromol. Symp. 2004, 213, 7.

    7. [7]

      Potapov, A. G.; Terskikh, V. V.; Zakharov, V. A.; Bukatov, G. D. J. Mol. Catal. A:Chem. 1999, 145, 147.

    8. [8]

      Potapov, A. G.; Terskikh, V. V.; Bukatov, G. D.; Zakharov, V. A. J. Mol. Catal. A:Chem. 2000, 158, 457.

    9. [9]

      Hu, J.; Han, B.; Shen, X. R.; Fu, Z. S.; Fan, Z. Q. Chin. J. Polym. Sci. 2013, 31, 583.

    10. [10]

      Franceschini, F. C.; Tavares, T. T. D. R.; Greco, P. P.; Galland, G. B.; dos Santos, J. H.; Soares, J. B. J. Appl. Polym. Sci. 2005, 95, 1050.

    11. [11]

      Rocha, T. C. J.; Coutinho, F. M. B.; Soares, B. G. Polym. Bull. 2009, 62, 1.

    12. [12]

      Gao, H.; Liu, X.; Tang, Y.; Pan, J.; Wu, Q. Polym. Chem. 2011, 2, 1398.

    13. [13]

      Huang, W. Q.; Yang, L.; Zhao, X.; Man, Y.; Li, B. Y.; Zhang, Y.; Yang, W. T. Chem. Ind. & Eng. Pro. 2011, 30, 1231(in Chinese).

    14. [14]

      Blaakmeer, E. S. M.; van Eck, E. R. H.; Kentgens, A. P. M. Phys. Chem. Chem. Phys. 2018, 20, 7974.

    15. [15]

      Niu, Q. T.; Zhang, J. Y.; Peng, W.; Fan, Z. Q.; He, A. H. Mol. Catal. 2019, 471, 1.

    16. [16]

      Richardson, W. S. J. Polym. Sci. 1954, 13, 325.

    17. [17]

      Ferington, T. E.; Tobolsky, A. V. J. Polym. Sci. 1958, 31, 25.

    18. [18]

      Dolgoplosk, B.; Belonovskaia, G. P.; Boldyreva, I. I.; Nelson, K. V.; Kropacheva, E. N.; Rosinoer, J. M.; Chernova, J. D. J. Polym. Sci. 1961, 53, 209.

    19. [19]

      Kennedy, J. P.; Squires, R. G. Polymer 1965, 6, 579.

    20. [20]

      Binder, J. L. J. Polym. Sci. Part A:Gen. Pap. 1963, 1, 37.

    21. [21]

      Kössler, I.; Vodehnal, J.; Štolka, M. J. Polym. Sci. Part A:Gen. Pap. 1965, 3, 2081.

    22. [22]

      Pétiaud, R.; Taärit, Y. B. J. Chem. Soc. 1980, 10, 1385.

    23. [23]

      Peng, Y. X.; Deng, Y. G.; Liu, J. L.; Dai, H. S.; Cun, L. F. Polym. Mater. Sci. Eng. 1997, 13, 95(in Chinese).

    24. [24]

      Gaylord, N. G.; Matyska, B.; Mach, K.; Vodehnal, J. J. Polym. Sci. Pol. Chem. 1966, 4, 2493.

    25. [25]

      Gaylord, N. G.; Kössler, I.; Matyska, B.; Mach, K. J. Polym. Sci. Pol. Chem. 1968, 6, 125.

    26. [26]

      Matyska, B.; Doležal, I.; Kössler, I. Collect. Czech. Chem. C 1971, 36, 2924.

    27. [27]

      Uchida, Y.; Furuhata, K. I.; Ishiwata, H. Bull. Chem. Soc. Jpn. 1971, 44, 1118.

    28. [28]

      Akutagawa, S.; Taketomi, T.; Otsuka, S. Chem. Lett. 1976, 5, 485.

    29. [29]

      Shen, G. L. Journal of Liaoyang Petrochemical College 1996, 12, 1(in Chinese).

    30. [30]

      Yu, S. J. Speciality Petrochemicals 2000, (2), 20(in Chinese).

    31. [31]

      Shen, G. L.; Tang, L. H. Speciality Petrochemicals 2004, (1), 17(in Chinese).

    32. [32]

      Xia, S. W.; Xia, S. W.; Ma, S. X. Acta Polym. Sinica 1998, (3), 262(in Chinese).

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(33)
  • Abstract views(2982)
  • HTML views(375)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return