Citation: Shen Yanglin, Jin Junling, Duan Guangxiong, Xie Yunpeng, Lu Xing. Formation of Spindle-Like Ag58 Cluster Induced by Isomerization of [Ag14][J]. Acta Chimica Sinica, ;2020, 78(11): 1255-1259. doi: 10.6023/A20070317 shu

Formation of Spindle-Like Ag58 Cluster Induced by Isomerization of [Ag14]

  • Corresponding author: Xie Yunpeng, xieyp@hust.edu.cn Lu Xing, lux@hust.edu.cn
  • Received Date: 16 July 2020
    Available Online: 3 August 2020

    Fund Project: the National Natural Science Foundation of China 21771071the National Natural Science Foundation of China 21925104the National Natural Science Foundation of China 51672093Project supported by the National Natural Science Foundation of China (Nos. 21771071, 51672093, 21925104)

Figures(4)

  • The atomically precise silver(I)-thiolate clusters in nanoscale have attracted extensive attention for years due to their attractive aesthetic structures and potential applications. Herein, two novel core-shell structured silver(I)-thiolate clusters of [Ag56S12(tBuS)20(CF3CO2)12]·6CH3CN·8H2O (abbreviated as Ag56) and [Ag58S12(tBuS)20(CF3CO2)14(CH3CN)6]·6CH3CN (Ag58) are prepared by employing the self-assembly method in solution. Especially, with the introduction of dimethylformamide (DMF) and bis(diphenylphosphino)methane (DPPM), the tBuSAg precursor reacted with CF3CO2Ag to produce a novel cluster Ag58 instead of Ag56 that has a similar structure with previous reports. X-ray structural analysis indicates that both clusters have Ag14 core units. But different from the common dodecahedron structure in Ag56, the spindle-shaped Ag14 structure in Ag58 is discovered for the first time and then induces the shell structure of Ag58 to form a rare spindle shape, in which silver atoms are layered in a form of "Ag4-Ag8-Ag10-Ag10-Ag8-Ag4". Notably, the spindle-shaped Ag14 is formed by rhombic dodecahedron being symmetrically pulled outward. Thus, there are obvious similarities and differences between the two Ag14 core structures. Compared with the previously reported the face-centered cubic Ag14 prepared by solvothermal methods, the rhombic dodecahedron and the rhombic dodecahedron-like (spindle) Ag14 were obtained at room temperature, which indicates that the formation of the clusters is a thermodynamic control. However, the change of solvent and auxiliary ligands also caused the Ag14 rhombohedral dodecahedron to deform and transform into a spindle-shaped structure, proving that the formation of the clusters is also a process controlled by kinetics. These prove that the synthesis of clusters is a process dominated by both of kinetics and thermodynamics. The UV-Vis absorption and fluorescence spectra show that the structure discrepancies of the two clusters deriving from the isomerization of Ag14 units significantly affect the energy levels and fluorescence properties of the clusters. This study enriches the thiolate-silver cluster family and provides new samples and insights for understanding the formation mechanism and properties of such core-shell architectures.
  • 加载中
    1. [1]

      Jin, R.; Egusa, S.; Scherer, N. F. J. Am. Chem. Soc. 2004, 126, 9900.  doi: 10.1021/ja0482482

    2. [2]

      Fuhr, O.; Dehnen, S.; Fenske, D. Chem. Soc. Rev. 2013, 42, 1871.  doi: 10.1039/C2CS35252D

    3. [3]

      Zhang, T.; Guo, C.; Wei, S. X.; Wu, Z. H.; Han, Z. X.; Lu, X. Q. Acta Chim. Sinica 2018, 76, 62(in Chinese).
       

    4. [4]

      Tian, H.; Zheng, L.-M. Acta Chim. Sinica 2020, 78, 34(in Chinese).
       

    5. [5]

      Zhang, Y.; Wu, J.; Cui, S.; Wei, W.; Chen, W.; Pang, R.; Wu, Z.; Mi, L. Chem. Eur. J. 2020, 26, 584.  doi: 10.1002/chem.201904873

    6. [6]

      Kang, X.; Zhu, M. Chem. Soc. Rev. 2019, 48, 2422.  doi: 10.1039/C8CS00800K

    7. [7]

      Ma, X. H. Chin. J. Chem. 2019, 37, 1287.  doi: 10.1002/cjoc.201900373

    8. [8]

      Xue, Y.; Zhao, L. Chin. J. Chem. 2019, 37, 667.  doi: 10.1002/cjoc.201900138

    9. [9]

      Xie, Y.-P.; Duan, G.; Han, J.; Yang, B.; Lu, X. Nanoscale 2020, 12, 1617.  doi: 10.1039/C9NR07779K

    10. [10]

      Zhang, Y.; Wu, M.; Wu, M.; Guo, L.; Cao, L.; Wu, H.; Zhang, X. Acta Chim. Sinica 2018, 76, 709(in Chinese).
       

    11. [11]

      Xie, Y.-P.; Jin, J.-L.; Lu, X.; Mak, T. C. W. Angew. Chem., Int. Ed. 2015, 54, 15176.  doi: 10.1002/anie.201507512

    12. [12]

      Wang, Q.-M.; Lin, Y.-M.; Liu, K.-G. Acc. Chem. Res. 2015, 48, 1570.  doi: 10.1021/acs.accounts.5b00007

    13. [13]

      Yang, J.; Jin, R. ACS Materials Lett. 2019, 1, 482.  doi: 10.1021/acsmaterialslett.9b00246

    14. [14]

      Schmidbaur, H.; Schier, A. Angew. Chem., Int. Ed. 2015, 54, 746.  doi: 10.1002/anie.201405936

    15. [15]

      Kumar, S.; Bolan, M. D.; Bigioni, T. P. J. Am. Chem. Soc. 2010, 132, 13141.  doi: 10.1021/ja105836b

    16. [16]

      Bhattarai, B.; Zaker, Y.; Atnagulov, A.; Yoon, B.; Landman, U.; Bigioni, T. P. Acc. Chem. Res. 2018, 51, 3104.  doi: 10.1021/acs.accounts.8b00445

    17. [17]

      Duan, G.-X.; Tian, L.; Wen, J.-B.; Li, L.-Y.; Xie, Y.-P.; Lu, X. Nanoscale 2018, 10, 18915.  doi: 10.1039/C8NR06399K

    18. [18]

      Wang, Z.-Y.; Wang, M.-Q.; Li, Y.-L.; Luo, P.; Jia, T.-T.; Huang, R.-W.; Zang, S.-Q.; Mak, T. C. J. Am. Chem. Soc. 2018, 140, 1069.  doi: 10.1021/jacs.7b11338

    19. [19]

      Jin, J.-L.; Xie, Y.-P.; Cui, H.; Duan, G.-X.; Lu, X.; Mak, T. C. Inorg. Chem. 2017, 56, 10412.  doi: 10.1021/acs.inorgchem.7b01326

    20. [20]

      Jin, F. M.; Dong, H. W.; Zhao, Y.; Zhuang, S. L.; Liao, L. W.; Yan, N.; Gu, W. M.; Zha, J.; Yuan, J. Y.; Li, J.; Deng, H. T.; Gan, Z. B.; Yang, J. L.; Wu, Z. K. Acta Chim. Sinica 2020, 78, 407.  doi: 10.6023/A20040134

    21. [21]

      Zhou, K.; Qin, C.; Wang, X.-L.; Shao, K.-Z.; Yan, L.-K.; Su, Z.-M. CrystEngComm 2014, 16, 7860.  doi: 10.1039/C4CE00867G

    22. [22]

      Yang, H.; Yan, J.; Wang, Y.; Deng, G.; Su, H.; Zhao, X.; Xu, C.; Teo, B. K.; Zheng, N. J. Am. Chem. Soc. 2017, 139, 16113.  doi: 10.1021/jacs.7b10448

    23. [23]

      Desireddy, A.; Conn, B. E.; Guo, J.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U.; Bigioni, T. P. Nature 2013, 501, 399.  doi: 10.1038/nature12523

    24. [24]

      Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. J. Am. Chem. Soc. 2015, 137, 11578.  doi: 10.1021/jacs.5b07088

    25. [25]

      Wang, Z.; Su, H.-F.; Tung, C.-H.; Sun, D.; Zheng, L.-S. Nat. Commun. 2018, 9, 4407.  doi: 10.1038/s41467-018-06755-4

    26. [26]

      Li, G.; Lei, Z.; Wang, Q.-M. J. Am. Chem. Soc. 2010, 132, 17678.  doi: 10.1021/ja108684m

    27. [27]

      Anson, C. E.; Eichhofer, A.; Issac, I.; Fenske, D.; Fuhr, O.; Sevillano, P.; Persau, C.; Stalke, D.; Zhang, J. Angew. Chem., Int. Ed. 2008, 47, 1326.  doi: 10.1002/anie.200704249

    28. [28]

      Dhayal, R. S.; Liao, J.-H.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Angew. Chem., Int. Ed. 2015, 54, 3702.  doi: 10.1002/anie.201410332

    29. [29]

      Yuan, P.; Zhang, R.; Selenius, E.; Ruan, P.; Yao, Y.; Zhou, Y.; Malola, S.; Häkkinen, H.; Teo, B. K.; Cao, Y.; Zheng, N. Nat. Commun. 2020, 11, 2229.  doi: 10.1038/s41467-020-16062-6

    30. [30]

      Li, Y.-H.; Wang, Z.-Y.; Ma, B.; Xu, H.; Zang, S.-Q.; Mak, T. C. W. Nanoscale 2020, 12, 10944.  doi: 10.1039/D0NR00342E

    31. [31]

      Kang, X.; Wei, X.; Xiang, P.; Tian, X.; Zuo, Z.; Song, F.; Wang, S.; Zhu, M. Chem. Sci. 2020, 11, 4808.  doi: 10.1039/D0SC01055C

    32. [32]

      Yuan, X.; Goswami, N.; Chen, W.; Yao, Q.; Xie, J. Chem. Commun. 2016, 52, 5234.  doi: 10.1039/C6CC00857G

    33. [33]

      Wang, Z.; Su, H.-F.; Gong, Y.-W.; Qu, Q.-P.; Bi, Y.-F.; Tung, C.-H.; Sun, D.; Zheng, L.-S. Nat. Commun. 2020, 11, 308.  doi: 10.1038/s41467-019-13682-5

    34. [34]

      Wang, Z.; Su, H.-F.; Wang, X.-P.; Zhao, Q.-Q.; Tung, C.-H.; Sun, D.; Zheng, L.-S. Chem. Eur. J. 2018, 24, 1640.  doi: 10.1002/chem.201704298

    35. [35]

      Wang, Z.; Sun, Y.-M.; Qu, Q.-P.; Liang, Y.-X.; Wang, X.-P.; Liu, Q.-Y.; Kurmoo, M.; Su, H.-F.; Tung, C.-H.; Sun, D. Nanoscale 2019, 11, 10927.  doi: 10.1039/C9NR04045E

    36. [36]

      Liu, J.-W.; Su, H.-F.; Wang, Z.; Li, Y.-A.; Zhao, Q.-Q.; Wang, X.-P.; Tung, C.-H.; Sun, D.; Zheng, L.-S. Chem. Commun. 2018, 54, 4461.  doi: 10.1039/C8CC01767K

    37. [37]

      Huang, R.-W.; Wei, Y.-S.; Dong, X.-Y.; Wu, X.-H.; Du, C.-X.; Zang, S.-Q.; Mak, T. C. Nat. Chem. 2017, 9, 689  doi: 10.1038/nchem.2718

    38. [38]

      Jin, S.; Xu, F.; Du, W.; Kang, X.; Chen, S.; Zhang, J.; Li, X.; Hu, D.; Wang, S.; Zhu, M. Inorg. Chem. 2018, 57, 5114.  doi: 10.1021/acs.inorgchem.8b00183

    39. [39]

      Tian, S.; Li, Y.-Z.; Li, M.-B.; Yuan, J.; Yang, J.; Wu, Z.; Jin, R. Nat. Commun. 2015, 6, 8667.  doi: 10.1038/ncomms9667

    40. [40]

      Yuan, S.-F.; Guan, Z.-J.; Liu, W.-D.; Wang, Q.-M. Nat. Commun. 2019, 10, 4032.  doi: 10.1038/s41467-019-11988-y

    41. [41]

      Nan, Z.-A.; Xiao, Y.; Liu, X.-Y.; Wang, T.; Cheng, X.-L.; Yang, Y.; Lei, Z.; Wang, Q.-M. Chem. Commun. 2019, 55, 6771.  doi: 10.1039/C9CC03533H

    42. [42]

      Sun, D.; Wang, H.; Lu, H.-F.; Feng, S.-Y.; Zhang, Z.-W.; Sun, G.-X.; Sun, D.-F. Dalton Trans. 2013, 42, 6281.  doi: 10.1039/c3dt50342a

    43. [43]

      Jin, S.; Wang, S.; Song, Y.; Zhou, M.; Zhong, J.; Zhang, J.; Xia, A.; Pei, Y.; Chen, M.; Li, P.; Zhu, M. J. Am. Chem. Soc. 2014, 136, 15559.  doi: 10.1021/ja506773d

    44. [44]

      Feng, Y.-H.; Gao, X.-L.; Shi, J.-F.; Zhou, K.; Ji, J.-Y.; Bi, Y.-F. Chem. Asian J. 2019, 14, 3279.  doi: 10.1002/asia.201901146

    45. [45]

      Chen, H.-Q.; He, X.; Guo, H.; Fu, N.-Y.; Zhao, L. Dalton Trans. 2015, 44, 3963.  doi: 10.1039/C4DT04021J

    46. [46]

      Casuso, P.; Carrasco, P.; Loinaz, I.; Cabañero, G.; Grande, H. J.; Odriozola, I. Soft Matter 2011, 7, 3627.  doi: 10.1039/c0sm01217c

    47. [47]

      Bestgen, S.; Yang, X.; Issac, I.; Fuhr, O.; Roesky, P. W.; Fenske, D. Chem. Eur. J. 2016, 22, 9933.  doi: 10.1002/chem.201602158

    48. [48]

      Kang, X.; Jin, S.; Xiong, L.; Wei, X.; Zhou, M.; Qin, C.; Pei, Y.; Wang, S.; Zhu, M. Chem. Sci. 2020, 11, 1691.  doi: 10.1039/C9SC05700E

    49. [49]

      Guan, Z.-J.; Hu, F.; Li, J.-J.; Wen, Z.-R.; Lin, Y.-M.; Wang, Q.-M. J. Am. Chem. Soc. 2020, 142, 2995.  doi: 10.1021/jacs.9b11836

    50. [50]

      Liao, L.; Wang, C.; Zhuang, S.; Yan, N.; Zhao, Y.; Yang, Y.; Li, J.; Deng, H.; Wu, Z. Angew. Chem. Int. Ed. 2020, 59, 731.  doi: 10.1002/anie.201912090

    51. [51]

      Wu, Z.; MacDonald, M. A.; Chen, J.; Zhang, P.; Jin, R. J. Am. Chem. Soc. 2011, 133, 9670.  doi: 10.1021/ja2028102

    52. [52]

      Wu, Z.; Lanni, E.; Chen, W.; Bier, M. E.; Ly, D.; Jin, R. J. Am. Chem. Soc. 2009, 131, 16672.  doi: 10.1021/ja907627f

    53. [53]

      Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883.  doi: 10.1021/ja801173r

    54. [54]

      Wang, Z.; Qu, Q.-P.; Su, H.-F.; Huang, P.; Gupta, R. K.; Liu, Q.-Y.; Tung, C.-H.; Sun, D.; Zheng, L.-S. Sci. China Chem. 2020, 63, 16.  doi: 10.1007/s11426-019-9638-3

    55. [55]

      Xu, Q.-Q.; Dong, X.-Y.; Huang, R.-W.; Li, B.; Zang, S.-Q.; Mak, T. C. Nanoscale 2015, 7, 1650.  doi: 10.1039/C4NR05122J

    56. [56]

      Li, B.; Huang, R.-W.; Qin, J.-H.; Zang, S.-Q.; Gao, G.-G.; Hou, H.-W.; Mak, T. C. W. Chem. Eur. J. 2014, 20, 12416.  doi: 10.1002/chem.201404049

    57. [57]

      Li, Y.-L.; Zhang, W.-M.; Wang, J.; Tian, Y.; Wang, Z.-Y.; Du, C.-X.; Zang, S.-Q.; Mak, T. C. Dalton Trans. 2018, 47, 14884.  doi: 10.1039/C8DT03165G

    58. [58]

      Bonačić-Koutecký, V.; Kulesza, A.; Gell, L.; Mitrić, R.; Antoine, R.; Bertorelle, F.; Hamouda, R.; Rayane, D.; Broyer, M.; Tabarin, T.; Dugourd, P. Phys. Chem. Chem. Phys., 2012, 14, 9282.  doi: 10.1039/c2cp00050d

    59. [59]

      Jiang, Z.-G.; Shi, K.; Lin, Y.-M.; Wang, Q.-M. Chem. Commun. 2014, 50, 2353.  doi: 10.1039/c3cc49290g

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    5. [5]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    6. [6]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    7. [7]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    8. [8]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(1)
  • Abstract views(727)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return