Citation: He Jinjun, Zhang Haozhe, Liu Xiaoqing, Lu Xihong. Enhancing Zn2+ Storage Capability of Cobalt Manganese Oxide by In-Situ Nanocarbon Coating[J]. Acta Chimica Sinica, ;2020, 78(10): 1069-1075. doi: 10.6023/A20070315 shu

Enhancing Zn2+ Storage Capability of Cobalt Manganese Oxide by In-Situ Nanocarbon Coating

  • Corresponding author: Liu Xiaoqing, liuxiaoq5@mail.sysu.edu.cn Lu Xihong, luxh6@mail.sysu.edu.cn
  • Received Date: 15 July 2020
    Available Online: 11 September 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21822509, U1810110, 21802173) and Science and Technology Planning Project of Guangdong Province (No. 2018A050506028)the National Natural Science Foundation of China 21802173the National Natural Science Foundation of China U1810110the National Natural Science Foundation of China 21822509Science and Technology Planning Project of Guangdong Province 2018A050506028

Figures(5)

  • The cobalt manganese oxide (CMO), with the advantages of high safety, non-toxicity, easy to obtain, multiple active sites, holds great potential in constructions of Zn-ion batteries (ZIBs). Yet, the dissolution of electrode materials into the electrolyte usually causes the structural collapse during repeated charge/discharge courses, which greatly limits the lifespan of ZIBs and thus restricts their further development. Herein, an in-situ coating method is developed to address this issue. Via a simple one-step hydrothermal method, a nanoscale carbon layer (denoted as nC) is introduced onto the surface of CMO (CMO@C) to prolong its cycling stability. Specifically, 30 mmol NH4F and 75 mmol CO(CH2)2 are first dissolved in 100 mL deionized water. Then, 11.25 mmol Mn(CH3COO)2 and 3.75 mmol Co(CH3COO)2 are added and stirred until the solid completely dissolves. Finally, 0.5 g glucose is dissolved in the solution and stirred for 5 min. The precursor solution is transferred into the 25 mL Teflon-lined stainless-steel autoclave and heated at 125℃ for 6 h in the oven. The as-obtained powder is washed three times by water and then dried at 60℃ overnight. The CMO@C sample is obtained after annealing the powder in air at 450℃ for 1 h. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectra (Raman) characterizations demonstrate that the introduction of the nC coating layer does not alter the composition and structure of CMO. Moreover, taking advantages of the superior conductivity of the carbon coverage, the CMO@C possesses a smaller charge transfer resistance and higher Zn ion diffusion capability compared with the CMO counterpart. The quicker charge transfer and faster ion exchange characteristics are both beneficial to the electrochemical performance optimization, both for the capacity enlargement and for the lifespan extension. As a proof of concept, at the current density of 0.5 A·g-1, the CMO@C shows a high specific capacity of 271.9 mAh·g-1 and no capacity loss is detected after 1000 cycle tests, which substantially outstrip those of the CMO (103.7 mAh·g-1 and 130 cycle lifespan). The work sheds light on the rational design of bimetal oxides as high-performance cathodes for ZIBs assembly.
  • 加载中
    1. [1]

      Tian, C.; Tian, J.; Chen, F.; Tong, L; Gao, S.; Xu, C.; Wang, Z. J. Chongqing University Tech. (Natural Science) 2018, 10, 34 (in Chinese).

    2. [2]

      Tang, G.; Mao, K.; Zhang, J.; Lyu, P.; Cheng, X.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2020, 78, 444 (in Chinese).
       

    3. [3]

      Wang, X.; Li, Y.; Du, L.; Gao, F.; Wu, Q.; Yang, L.; Chen, Q.; Wang, X.; Hu, Z. Acta Chim. Sinica 2018, 76, 627 (in Chinese).
       

    4. [4]

      Wang, L.; Zhao, D.; Liu, X.; Yu, P.; Fu, H. Acta Chim. Sinica 2017, 75, 231 (in Chinese).
       

    5. [5]

      Bauer, A.; Song, J.; Vail, S.; Pan, W.; Barker, J.; Lu, Y. Adv. Energy Mater. 2018, 8, 1702869.  doi: 10.1002/aenm.201702869

    6. [6]

      Zhang, L.; Zhang, B.; Wang, C.; Dou, Y.; Zhang, Q.; Liu, Y.; Gao, H.; Al-Mamun, M.; Pang, W.; Guo, Z.; Dou, S.; Liu, H.; Nano Energy 2019, 60, 432.  doi: 10.1016/j.nanoen.2019.03.085

    7. [7]

      Zeng, Y.; Zhang, X.; Qin, R.; Liu, X.; Fang, P.; Zheng, D.; Tong, Y.; Lu, X. Adv. Mater. 2019, 31, 1903675.  doi: 10.1002/adma.201903675

    8. [8]

      He, J.; Liu, X.; Zhang, H.; Yang, Z.; Shi, X.; Liu, Q.; Lu, X. ChemSusChem 2020, 13, 1568.  doi: 10.1002/cssc.201902659

    9. [9]

      Tang, B.; Shan, L.; Liang, S.; Zhou, J. Energy Envir. Sci. 2019, 12, 3288.  doi: 10.1039/C9EE02526J

    10. [10]

      Alfaruqi, M.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J.; Choi, S.; Kim, J. Chem. Mater. 2015, 27, 3609.  doi: 10.1021/cm504717p

    11. [11]

      He, X.; Zhang, H.; Zhao, X.; Zhang, P.; Chen, M.; Zheng, Z.; Han, Z.; Zhu, T.; Tong, Y.; Lu, X. Adv. Sci. 2019, 6, 1900151  doi: 10.1002/advs.201900151

    12. [12]

      Sada, K.; Senthilkumar, B.; Barpanda, P. J. Mater. Chem. A 2019, 7, 23981.  doi: 10.1039/C9TA05836B

    13. [13]

      Bai, S.; Song, J.; Wen, Y.; Cheng, J.; Cao, G.; Yang, Y.; Li, D. RSC Adv. 2016, 6, 40793.  doi: 10.1039/C6RA01768A

    14. [14]

      Zhang, H.; Liu, Q.; Wang, J.; Chen, K.; Xue, D.; Liu, J.; Lu, X. J. Mater. Chem. A 2019, 7, 22079.  doi: 10.1039/C9TA08418E

    15. [15]

      Wu, C.; Gu, S.; Zhang, Q.; Bai, Y.; Li, M.; Yuan, Y.; Wang, H.; Liu, X.; Yuan, Y.; Zhu, N.; Wu, F.; Li, H.; Gu, L.; Lu, J. Nat. Commun. 2019, 10, 73.  doi: 10.1038/s41467-018-07980-7

    16. [16]

      Xiong, T.; Yu, Z.; Wu, H.; Du, Y.; Xie, Q.; Chen, J.; Zhang, Y.; Pennycook, S.; Lee, W.; Xue, J. Adv. Energy Mater. 2019, 9, 1803815.  doi: 10.1002/aenm.201803815

    17. [17]

      Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K.; Liu, J. Nat. Energy 2016, 1, 16039.  doi: 10.1038/nenergy.2016.39

    18. [18]

      Soundharrajan, V.; Sambandam, B.; Kim, S.; Mathew, V.; Jo, J.; Kim, S.; Lee, J.; Islam, S.; Kim, K.; Sun, Y.; Kim, J. ACS Energy Lett. 2018, 3, 1998.  doi: 10.1021/acsenergylett.8b01105

    19. [19]

      Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. J. Am. Chem. Soc. 2016, 138, 12894.  doi: 10.1021/jacs.6b05958

    20. [20]

      Zhang, H.; Wang, J.; Liu, Q.; He, W.; Lai, Z.; Zhang, X.; Yu, M.; Tong, Y.; Lu, X. Energy Storage Mater. 2019, 21, 154.  doi: 10.1016/j.ensm.2018.12.019

    21. [21]

      Zhou, X.; Li, X.; Liao, B. J. Chongqing University Tech. (Natural Science) 2018, 7, 124 (in Chinese).

    22. [22]

      Liu, L.; Qi, X.; Hu, Y.; Chen, L.; Huang, X. Acta Chim. Sinica 2017, 75, 218 (in Chinese).
       

    23. [23]

      Zhou, Y.; Chen, T.; Zhang, J.; Liu, Y.; Ren, P. Chin. J. Chem. 2017, 35, 1294.  doi: 10.1002/cjoc.201600915

    24. [24]

      Mo, X.; Liu, W.; Xie, J.; Luo, R.; Hu, S. J. Chongqing University Tech. (Natural Science) 2020, 5, 220 (in Chinese).

    25. [25]

      Zheng, Z.; Wu, Z.; Xiang, W.; Guo, X. Acta Chim. Sinica 2017, 75, 501 (in Chinese).
       

    26. [26]

      Zhu, H.; Gu, L.; Yu, D.; Sun, Y.; Wan, M.; Zhang, M.; Wang, L.; Wang, L.; Wu, W.; Yao, J.; Du, M.; Guo, S. Energy Envir. Sci. 2017, 10, 321.  doi: 10.1039/C6EE03054H

    27. [27]

      Lu, Y.; Wang, J.; Zeng, S.; Zhou, L.; Xu, W.; Zheng, D.; Liu, J.; Zeng, Y.; Lu, X. J. Mater. Chem. A 2019, 7, 21678.  doi: 10.1039/C9TA08625K

    28. [28]

      Sumi, V. S.; Elias, L.; Shibli, S. M. A. Int. J. Hydrogen Energy 2020, 45, 12360.  doi: 10.1016/j.ijhydene.2020.02.217

    29. [29]

      Zhao, Z.; Lin, J.; Wang, G.; Muhammad, T. AIChE J. 2015, 61, 239.  doi: 10.1002/aic.14641

    30. [30]

      Zeng, Y.; Lin, Z.; Wang, Z.; Wu, M.; Tong, Y.; Lu, X. Adv. Mater. 2018, 30, 1707290.  doi: 10.1002/adma.201707290

    31. [31]

      Wang, C.; Zeng, Y.; Xiao, X.; Wu, S.; Zhong, G.; Xu, K.; Wei, Z.; Su, W.; Lu, X. J. Energy Chem. 2020, 43, 182.  doi: 10.1016/j.jechem.2019.08.011

    32. [32]

      Zhang, H.; Liu, Q.; Fang, Y.; Teng, C.; Liu, X.; Fang, P.; Tong, Y.; Lu, X. Adv. Mater. 2019, 31, 1904948.  doi: 10.1002/adma.201904948

    33. [33]

      Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. J. Am. Chem. Soc. 2016, 138, 12894.  doi: 10.1021/jacs.6b05958

    34. [34]

      Liu, C.; Neale, Z.; Zheng, J.; Jia, X.; Huang, J.; Yan, M.; Tian, M.; Wang, M.; Yang, J.; Cao, G. Energy Environ. Sci. 2019, 12, 2273.  doi: 10.1039/C9EE00956F

    35. [35]

      Ma, L.; Chen, S.; Li, H.; Ruan, Z.; Tang, Z.; Liu, Z.; Wang, Z.; Huang, Y.; Pei, Z.; Zapiena, J.; Zhi, C. Energy Environ. Sci. 2018, 11, 2521.  doi: 10.1039/C8EE01415A

    36. [36]

      Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Nat. Commun. 2018, 9, 1.  doi: 10.1038/s41467-017-02088-w

    37. [37]

      Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Nat. Commun. 2017, 8, 1.  doi: 10.1038/s41467-016-0009-6

    38. [38]

      Liu, J.; Wang, J.; Ku, Z.; Wang, H.; Chen, S.; Zhang, L.; Lin, J.; Shen, Z. ACS nano, 2016, 10, 1007.  doi: 10.1021/acsnano.5b06275

    39. [39]

      Liu, J.; Chen, M.; Zhang, L.; Jiang, J.; Yan, J.; Huang, Y.; Lin, J.; Fan, H.; Shen, Z. Nano Lett. 2014, 14, 7180.  doi: 10.1021/nl503852m

    40. [40]

      Dai, X.; Wan, F.; Zhang, L.; Cao, H.; Niu, Z. Energy Storage Mater. 2019, 17, 143.  doi: 10.1016/j.ensm.2018.07.022

    41. [41]

      Alfaruqi, M.; Gim, J.; Kim, S.; Song, J.; Pham, D.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J. Electrochem. Commun. 2015, 60, 121.  doi: 10.1016/j.elecom.2015.08.019

  • 加载中
    1. [1]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    2. [2]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    4. [4]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    11. [11]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    12. [12]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    19. [19]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    20. [20]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

Metrics
  • PDF Downloads(5)
  • Abstract views(952)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return