Citation: Zhou Jiashen, Zhang Lin, Zhang Liang. Advances on Mechanism and Drug Discovery of Type-Ⅱ Fatty Acid Biosynthesis Pathway[J]. Acta Chimica Sinica, ;2020, 78(12): 1383-1398. doi: 10.6023/A20070299 shu

Advances on Mechanism and Drug Discovery of Type-Ⅱ Fatty Acid Biosynthesis Pathway

  • Corresponding author: Zhang Liang, liangzhang2014@sjtu.edu.cn
  • Received Date: 8 July 2020
    Available Online: 18 September 2020

    Fund Project: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Training Program) (No. 91853118) and Youth Program of National Natural Science Foundation of China (No. 21722802)the Major Research Plan of the National Natural Science Foundation of China(Training Program) 91853118Youth Program of National Natural Science Foundation of China 21722802

Figures(8)

  • Type-Ⅱ fatty acid biosynthesis pathway (FAS-Ⅱ) is the only essential biosynthesis pathway that producing saturated and unsaturated fatty acids for bacteria and plant cell assembly and cellular metabolism. It utilizes a series of individual enzymes encoded by discrete genes to stepwisely catalyze lipid chain growing carried by the substrate carrier protein-acyl carrier protein (ACP). Due to its indispensable biological role in bacteria growth, as well as the distinct biological regulation mechanisms from mammalian fatty acid biosynthesis (FAS-Ⅰ), the enzymes involved in FAS-Ⅱ have been considered as important anti-pathogenic drug targets for a long time. Hence, investigating the catalysis and dynamic regulation mechanisms of FAS-Ⅱ, developing novel anti-pathogenic drugs against the enzymes involved in FAS-Ⅱ is critical to the field. We here summarize the catalytic mechanism studies and inhibitor discovery work involved in FAS-Ⅱ so far, which may potentially facilitate further understanding of FAS-Ⅱ biological functions as well as antibacterial drug discovery for infectious diseases.
  • 加载中
    1. [1]

      Smith, S.; Witkowski, A.; Joshi, A. K. Prog. Lipid Res. 2003, 42, 289.

    2. [2]

      White, S. W.; Zheng, J.; Zhang, Y. M.; Rock, C.O. Annu. Rev. Biochem. 2005, 74, 791.

    3. [3]

      Cronan, J. E.; Thomas, J. Methods Enzymol. 2009, 459, 395.

    4. [4]

      Anghel, S. I.; Wahli, W. Cell Res. 2007, 17, 486.

    5. [5]

      Clay, H. B.; Parl, A. K.; Mitchell, S. L.; Singh, L.; Bell, L. N.; Murdock, D. G. PLoS One 2016, 11, e0151171.

    6. [6]

      Nathan, C. J. Exp. Med. 2017, 214, 2175.

    7. [7]

      Sukheja, P.; Kumar, P.; Mittal, N.; Li, S. G.; Singleton, E.; Russo, R.; Perryman, A. L.; Shrestha, R.; Awasthi, D.; Husain, S.; Soteropoulos, P.; Brukh, R.; Connell, N.; Freundlich, J. S.; Alland, D. mBio 2017, 8, e02022.

    8. [8]

      Ballinger, E.; Mosior, J.; Hartman, T.; Burns-Huang, K.; Gold, B.; Morris, R.; Goullieux, L.; Blanc, I.; Vaubourgeix, J.; Lagrange, S.; Fraisse, L.; Sans, S.; Couturier, C.; Bacque, E.; Rhee, K.; Scarry, S. M.; Aube, J.; Yang, G.; Ouerfelli, O.; Schnappinger, D.; Ioerger, T. R.; Engelhart, C. A.; McConnell, J. A.; McAulay, K.; Fay, A.; Roubert, C.; Sacchettini, J.; Nathan, C. Science 2019, 363, 6426.

    9. [9]

      Thorell, K.; Lehours, P.; Vale, F. F. Helicobacter 2017, 22 Suppl 1, e12409.

    10. [10]

      Jimenez-Diaz, L.; Caballero, A.; Perez-Hernandez, N.; Segura, A. Microb. Biotechnol. 2017, 10, 103.

    11. [11]

      Babu, M.; Greenblatt, J. F.; Emili, A.; Strynadka, N. C.; Reithmeier, R. A.; Moraes, T. F. Structure 2010, 18, 1450.

    12. [12]

      Ohlrogge, J.; Savage, L.; Jaworski, J.; Voelker, T.; Postbeittenmiller, D. Arch. Biochem. Biophys. 1995, 317, 185.

    13. [13]

      Chan, D. I.; Chu, B. C.; Lau, C. K.; Hunter, H. N.; Byers, D. M.; Vogel, H. J. J. Biol. Chem. 2010, 285, 30558.

    14. [14]

      Dall'aglio, P.; Arthur, C. J.; Williams, C.; Vasilakis, K.; Maple, H. J.; Crosby, J.; Crump, M. P.; Hadfield, A. T. Biochemistry 2011, 50, 5704.

    15. [15]

      Marcella, A. M.; Culbertson, S. J.; Shogren-Knaak, M. A.; Barb, A. W. J. Mol. Biol. 2017, 429, 3763.

    16. [16]

      Keating, D. H.; Carey, M. R.; Cronan, J. E. J. Biol. Chem. 1995, 270, 22229.

    17. [17]

      Bunkoczi, G.; Pasta, S.; Joshi, A.; Wu, X.; Kavanagh, K. L.; Smith, S.; Oppermann, U. Chem. Biol. 2007, 14, 1243.

    18. [18]

      Joseph-McCarthy, D.; Parris, K.; Huang, A.; Failli, A.; Quagliato, D.; Dushin, E. G.; Novikova, E.; Severina, E.; Tuckman, M.; Petersen, P. J.; Dean, C.; Fritz, C. C.; Meshulam, T.; DeCenzo, M.; Dick, L.; McFadyen, I. J.; Somers, W. S.; Lovering, F.; Gilbert, A. M. J. Med. Chem. 2005, 48, 7960.

    19. [19]

      Chu, M.; Mierzwa, R.; Xu, L.; Yang, S. W.; He, L.; Patel, M.; Stafford, J.; Macinga, D.; Black, T.; Chan, T. M.; Gullo, V. Bioorg. Med. Chem. Lett. 2003, 13, 3827.

    20. [20]

      Ruch, F. E.; Vagelos, P. R. J. Biol. Chem. 1973, 248, 8095.

    21. [21]

      Hong, S. K.; Kim, K. H.; Park, J. K.; Jeong, K. W.; Kim, Y.; Kim, E. E. FEBS Lett. 2010, 584, 1240.

    22. [22]

      Lee, W. C.; Park, J.; Balasubramanian, P. K.; Kim, Y. Biochem. Biophys. Res. Commun. 2018, 505, 208.

    23. [23]

      Li, Z.; Huang, Y.; Ge, J.; Fan, H.; Zhou, X.; Li, S.; Bartlam, M.; Wang, H.; Rao, Z. J. Mol. Biol. 2007, 371, 1075.

    24. [24]

      Keatinge-Clay, A. T.; Shelat, A. A.; Savage, D. F.; Tsai, S.-C.; Miercke, L. J. W.; O'Connell, J. D.; Khosla, C.; Stroud, R. M. Structure 2003, 11, 147.

    25. [25]

      Liu, W.; Han, C.; Hu, L.; Chen, K.; Shen, X.; Jiang, H. FEBS Lett. 2006, 580, 697.

    26. [26]

      Kong, Y. H.; Zhang, L.; Yang, Z. Y.; Han, C.; Hu, L. H.; Jiang, H. L.; Shen, X. Acta Pharmacol. Sin. 2008, 29, 870.

    27. [27]

      Kumar, V.; Sharma, A.; Pratap, S.; Kumar, P. Biochimie 2018, 149, 18.

    28. [28]

      Kumar, V.; Sharma, A.; Pratap, S.; Kumar, P. BBA-Proteins Proteom 2018, 1866, 1131.

    29. [29]

      Li, Y.; Florova, G.; Reynolds, K. A. J. Bacteriol. 2005, 187, 3795.

    30. [30]

      Han, L.; Lobo, S.; Reynolds, K. A. J. Bacteriol. 1998, 180, 4481.

    31. [31]

      Tsay, J. T.; Oh, W.; Larson, T. J.; Jackowski, S.; Rock, C. O. J. Biol. Chem. 1992, 267, 6807.

    32. [32]

      Gajiwala, K. S.; Margosiak, S.; Lu, J.; Cortez, J.; Su, Y.; Nie, Z.; Appelt, K. FEBS Lett. 2009, 583, 2939.

    33. [33]

      Yuan, Y.; Sachdeva, M.; Leeds, J. A.; Meredith, T. C. J. Bacteriol. 2012, 194, 5171.

    34. [34]

      Milligan, J. C.; Lee, D. J.; Jackson, D. R.; Schaub, A. J.; Beld, J.; Barajas, J. F.; Hale, J. J.; Luo, R.; Burkart, M. D.; Tsai, S. C. Nat. Chem. Biol. 2019, 15, 669.

    35. [35]

      Mindrebo, J. T.; Patel, A.; Kim, W. E.; Davis, T. D.; Chen, A.; Bartholow, T. G.; La Clair, J. J.; McCammon, J. A.; Noel, J. P.; Burkart, M. D. Nat. Commun. 2020, 11, 1727.

    36. [36]

      Nanson, J. D.; Himiari, Z.; Swarbrick, C. M.; Forwood, J. K. Sci. Rep. 2015, 5, 14797.

    37. [37]

      Price, A. C.; Choi, K. H.; Heath, R. J.; Li, Z.; White, S. W.; Rock, C. O. J. Biol. Chem. 2001, 276, 6551.

    38. [38]

      Wang, J.; Kodali, S.; Lee, S. H.; Galgoci, A.; Painter, R.; Dorso, K.; Racine, F.; Motyl, M.; Hernandez, L.; Tinney, E.; Colletti, S. L.; Herath, K.; Cummings, R.; Salazar, O.; González, I.; Basilio, A.; Vicente, F.; Genilloud, O.; Pelaez, F.; Jayasuriya, H.; Young, K.; Cully, D. F.; Singh, S. B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 7612.

    39. [39]

      Daines, R. A.; Pendrak, I.; Sham, K.; Van Aller, G. S.; Konstantinidis, A. K.; Lonsdale, J. T.; Janson, C. A.; Qiu, X.; Brandt, M.; Khandekar, S. S.; Silverman, C.; Head, M. S. J. Med. Chem. 2003, 46, 5.

    40. [40]

      McKinney, D. C.; Eyermann, C. J.; Gu, R. F.; Hu, J.; Kazmirski, S. L.; Lahiri, S. D.; McKenzie, A. R.; Shapiro, A. B.; Breault, G. ACS Infect. Dis. 2016, 2, 456.

    41. [41]

      Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Allocco, J.; Basilio, A.; Tormo, J. R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.; Barrett, J.; Schmatz, D.; Becker, J. W.; Cully, D.; Singh, S. B. Nature 2006, 441, 358.

    42. [42]

      Zheng, Z.; Parsons, J. B.; Tangallapally, R.; Zhang, W.; Rock, C. O.; Lee, R. E. Bioorg. Med. Chem. Lett. 2014, 24, 2585.

    43. [43]

      Kallberg, Y.; Oppermann, U.; Jornvall, H.; Persson, B. Eur. J. Biochem. 2002, 269, 4409.

    44. [44]

      Hou, J.; Zheng, H.; Chruszcz, M.; Zimmerman, M. D.; Shumilin, I. A.; Osinski, T.; Demas, M.; Grimshaw, S.; Minor, W. J. Bacteriol. 2016, 198, 463.

    45. [45]

      Price, A. C.; Zhang, Y.-M.; Rock, C. O.; White, S. W. Biochemistry 2001, 40, 12772.

    46. [46]

      Silva, R. G.; Rosado, L. A.; Santos, D. S.; Basso, L. A. Arch. Biochem. Biophys. 2008, 471, 1.

    47. [47]

      Price, A. C.; Zhang, Y. M.; Rock, C. O.; White, S. W. Structure 2004, 12, 417.

    48. [48]

      Cohen-Gonsaud, M.; Ducasse-Cabanot, S.; Quemard, A.; Labesse, G. Proteins 2005, 60, 392.

    49. [49]

      Cukier, C. D.; Hope, A. G.; Elamin, A. A.; Moynie, L.; Schnell, R.; Schach, S.; Kneuper, H.; Singh, M.; Naismith, J. H.; Lindqvist, Y.; Gray, D. W.; Schneider, G. ACS Chem. Biol. 2013, 8, 2518.

    50. [50]

      Lai, C. Y.; Cronan, J. E. J. Bacteriol. 2004, 186, 1869.

    51. [51]

      Sohn, M.-J.; Zheng, C.-J.; Kim, W.-G. J. Antibiot. 2008, 61, 687.

    52. [52]

      Wickramasinghe, S. R.; Inglis, K. A.; Urch, J. E.; Muller, S.; van Aalten, D. M.; Fairlamb, A. H. Biochem. J. 2006, 393, 447.

    53. [53]

      Tasdemir, D.; Lack, G.; Brun, R.; Rüedi, P.; Scapozza, L.; Perozzo, R. J. Med. Chem. 2006, 49, 3345.

    54. [54]

      Zhang, F.; Luo, S. Y.; Ye, Y. B.; Zhao, W. H.; Sun, X. G.; Wang, Z. Q.; Li, R.; Sun, Y. H.; Tian, W. X.; Zhang, Y. X. Biotechnol. Appl. Biochem. 2008, 51, 73.

    55. [55]

      Zeng, D.; Zhao, J.; Chung, H. S.; Guan, Z.; Raetz, C. R.; Zhou, P. J. Biol. Chem. 2013, 288, 5475.

    56. [56]

      Swarnamukhi, P. L.; Sharma, S. K.; Bajaj, P.; Surolia, N.; Surolia, A.; Suguna, K. FEBS Lett. 2006, 580, 2653.

    57. [57]

      Zhang, L.; Xiao, J.; Xu, J.; Fu, T.; Cao, Z.; Zhu, L.; Chen, H. Z.; Shen, X.; Jiang, H.; Zhang, L. Cell Res. 2016, 26, 1330.

    58. [58]

      Shen, S.; Hang, X.; Zhuang, J.; Zhang, L.; Bi, H.; Zhang, L. Int. J. Biol. Macromol. 2019, 128, 5.

    59. [59]

      Dodge, G. J.; Patel, A.; Jaremko, K. L.; McCammon, J. A.; Smith, J. L.; Burkart, M. D. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 6775.

    60. [60]

      Moynie, L.; Leckie, S. M.; McMahon, S. A.; Duthie, F. G.; Koehnke, A.; Taylor, J. W.; Alphey, M. S.; Brenk, R.; Smith, A. D.; Naismith, J. H. J. Mol. Biol. 2013, 425, 365.

    61. [61]

      Heath, R. J.; Rock, C. O. J. Biol. Chem. 1996, 271, 27795.

    62. [62]

      Nguyen, C.; Haushalter, R. W.; Lee, D. J.; Markwick, P. R.; Bruegger, J.; Caldara-Festin, G.; Finzel, K.; Jackson, D. R.; Ishikawa, F.; O'Dowd, B.; McCammon, J. A.; Opella, S. J.; Tsai, S. C.; Burkart, M. D. Nature 2014, 505, 427.

    63. [63]

      Bi, H.; Zhu, L.; Jia, J.; Zeng, L.; Cronan, J. E. Cell Chem. Biol. 2016, 23, 1480.

    64. [64]

      Wang, H.; Cronan, J. E. J. Biol. Chem. 2004, 279, 34489.

    65. [65]

      Bi, H.; Wang, H.; Cronan, J. E. Chem. Biol. 2013, 20, 1157.

    66. [66]

      Marrakchi, H.; Choi, K. H.; Rock, C. O. J. Biol. Chem. 2002, 277, 44809.

    67. [67]

      Aguilar, P. S.; Cronan, J. E.; de Mendoza, D. J. Bacteriol. 1998, 180, 2194.

    68. [68]

      Sharma, S. K.; Kapoor, M.; Ramya, T. N.; Kumar, S.; Kumar, G.; Modak, R.; Sharma, S.; Surolia, N.; Surolia, A. J. Biol. Chem. 2003, 278, 45661.

    69. [69]

      Zhang, L.; Liu, W.; Hu, T.; Du, L.; Luo, C.; Chen, K.; Shen, X.; Jiang, H. J. Biol. Chem. 2008, 283, 5370.

    70. [70]

      He, L.; Zhang, L.; Liu, X.; Li, X.; Zheng, M.; Li, H.; Yu, K.; Chen, K.; Shen, X.; Jiang, H.; Liu, H. J. Med. Chem. 2009, 52, 2465.

    71. [71]

      Zhang, L.; Kong, Y.; Wu, D.; Zhang, H.; Wu, J.; Chen, J.; Ding, J.; Hu, L.; Jiang, H.; Shen, X. Protein Sci. 2008, 17, 1971.

    72. [72]

      Chen, J.; Zhang, L.; Zhang, Y.; Zhang, H.; Du, J.; Ding, J.; Guo, Y.; Jiang, H.; Shen, X. BMC Microbiol. 2009, 9, 91.

    73. [73]

      McGillick, B. E.; Kumaran, D.; Vieni, C.; Swaminathan, S. Biochemistry 2016, 55, 1091.

    74. [74]

      Leesong, M.; Henderson, B. S.; Gillig, J. R.; Schwab, J. M.; Smith, J. L. Structure 1996, 4, 253.

    75. [75]

      Moynie, L.; Hope, A. G.; Finzel, K.; Schmidberger, J.; Leckie, S. M.; Schneider, G.; Burkart, M. D.; Smith, A. D.; Gray, D. W.; Naismith, J. H. J. Mol. Biol. 2016, 428, 108.

    76. [76]

      Kim, H. T.; Kim, S.; Na, B. K.; Chung, J.; Hwang, E.; Hwang, K. Y. Biochem. Biophys. Res. Commun. 2017, 493, 28.

    77. [77]

      Rafi, S.; Novichenok, P.; Kolappan, S.; Stratton, C. F.; Rawat, R.; Kisker, C.; Simmerling, C.; Tonge, P. J. J. Biol. Chem. 2006, 281, 39285.

    78. [78]

      Kim, K. H.; Ha, B. H.; Kim, S. J.; Hong, S. K.; Hwang, K. Y.; Kim, E. E. J. Mol. Biol. 2011, 406, 403.

    79. [79]

      Neckles, C.; Pschibul, A.; Lai, C. T.; Hirschbeck, M.; Kuper, J.; Davoodi, S.; Zou, J.; Liu, N.; Pan, P.; Shah, S.; Daryaee, F.; Bommineni, G. R.; Lai, C.; Simmerling, C.; Kisker, C.; Tonge, P. J. Biochemistry 2016, 55, 2992.

    80. [80]

      Li, H.; Zhang, X.; Bi, L.; He, J.; Jiang, T. PLoS One 2011, 6, e26743.

    81. [81]

      Kim, S. H.; Khan, R.; Choi, K.; Lee, S. W.; Rhee, S. FEBS J. 2020, 281, 4710.

    82. [82]

      Saito, J.; Yamada, M.; Watanabe, T.; Iida, M.; Kitagawa, H.; Takahata, S.; Ozawa, T.; Takeuchi, Y.; Ohsawa, F. Protein Sci. 2008, 17, 691.

    83. [83]

      Qiu, X.; Abdel-Meguid, S. S.; Janson, C. A.; Court, R. I.; Smyth, M. G.; Payne, D. J. Protein Sci. 1999, 8, 2529.

    84. [84]

      Miller, W. H.; Seefeld, M. A.; Newlander, K. A.; Uzinskas, I. N.; Burgess, W. J.; Heerding, D. A.; Yuan, C. C. K.; Head, M. S.; Payne, D. J.; Rittenhouse, S. F.; Moore, T. D.; Pearson, S. C.; Berry, V.; DeWolf, W. E.; Keller, P. M.; Polizzi, B. J.; Qiu, X.; Janson, C. A.; Huffman, W. F. J. Med. Chem. 2002, 45, 3246.

    85. [85]

      Seefeld, M. A.; Miller, W. H.; Newlander, K. A.; Burgess, W. J.; DeWolf, W. E.; Elkins, P. A.; Head, M. S.; Jakas, D. R.; Janson, C. A.; Keller, P. M.; Manley, P. J.; Moore, T. D.; Payne, D. J.; Pearson, S.; Polizzi, B. J.; Qiu, X.; Rittenhouse, S. F.; Uzinskas, I. N.; Wallis, N. G.; Huffman, W. F. J. Med. Chem. 2003, 46, 1627.

    86. [86]

      Heerding, D. A.; Chan, G.; DeWolf, W. E.; Fosberry, A. P.; Janson, C. A.; Jaworski, D. D.; McManus, E.; Miller, W. H.; Moore, T. D.; Payne, D. J.; Qiu, X.; Rittenhouse, S. F.; Slater-Radosti, C.; Smith, W.; Takata, D. T.; Vaidya, K. S.; Yuan, C. C. K.; Huffman, W. F. Bioorg. Med. Chem. Lett. 2001, 11, 2061.

    87. [87]

      Seefeld, M. A.; Miller, W. H.; Newlander, K. A.; Burgess, W. J.; Payne, D. J.; Rittenhouse, S. F.; Moore, T. D.; DeWolf, W. E.; Keller, P. M.; Qiu, X.; Janson, C. A.; Vaidya, K.; Fosberry, A. P.; Smyth, M. G.; Jaworski, D. D.; Slater-Radosti, C.; Huffman, W. F. Bioorg. Med. Chem. Lett. 2001, 11, 2241.

    88. [88]

      Ramnauth, J.; Surman, M. D.; Sampson, P. B.; Forrest, B.; Wilson, J.; Freeman, E.; Manning, D. D.; Martin, F.; Toro, A.; Domagala, M.; Awrey, D. E.; Bardouniotis, E.; Kaplan, N.; Berman, J.; Pauls, H. W. Bioorg. Med. Chem. Lett. 2009, 19, 5359.

    89. [89]

      Sampson, P. B.; Picard, C.; Handerson, S.; McGrath, T. E.; Domagala, M.; Leeson, A.; Romanov, V.; Awrey, D. E.; Thambipillai, D.; Bardouniotis, E.; Kaplan, N.; Berman, J. M.; Pauls, H. W. Bioorg. Med. Chem. Lett. 2009, 19, 5355.

    90. [90]

      Fage, C. D.; Lathouwers, T.; Vanmeert, M.; Gao, L. J.; Vrancken, K.; Lammens, E. M.; Weir, A. N. M.; Degroote, R.; Cuppens, H.; Kosol, S.; Simpson, T. J.; Crump, M. P.; Willis, C. L.; Herdewijn, P.; Lescrinier, E.; Lavigne, R.; Anne, J.; Masschelein, J. Angew. Chem. Int. Ed. 2020, 59, 10549.

    91. [91]

      Karlowsky, J. A.; Laing, N. M.; Baudry, T.; Kaplan, N.; Vaughan, D.; Hoban, D. J.; Zhanel, G. G. Antimicrob. Agents Chemother. 2007, 51, 1580.

    92. [92]

      Hafkin, B.; Kaplan, N.; Murphy, B. Antimicrob. Agents Chemother. 2015, 60, 1695.

    93. [93]

      Parker, E. N.; Drown, B. S.; Geddes, E. J.; Lee, H. Y.; Ismail, N.; Lau, G. W.; Hergenrother, P. J. Nat. Microbiol. 2020, 5, 67.

    94. [94]

      Ozawa, T.; Kitagawa, H.; Yamamoto, Y.; Takahata, S.; Iida, M.; Osaki, Y.; Yamada, K. Bioorg. Med. Chem. Lett. 2007, 15, 7325.

    95. [95]

      Jones, J. A.; Prior, A. M.; Marreddy, R. K. R.; Wahrmund, R. D.; Hurdle, J. G.; Sun, D.; Hevener, K. E. ACS Chem. Biol. 2019, 14, 1528.

    96. [96]

      Yu, Y. H.; Ma, J. R.; Wang, H. H. J. Microbiol. 2016, 4, 76 (in Chinese).

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    7. [7]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    17. [17]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    18. [18]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(143)
  • Abstract views(6410)
  • HTML views(1721)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return