Citation: Liang Huan, Gou Along, Gao Zhupeng, Lei Linsheng, Wang Bowen, Yu Lan, Xu Xuetao, Wang Shaohua. A New Strategy for the Synthesis of Tertiary Amides via a Copper-Catalyzed Decyanation Reaction of N, N-Disubstituted 2-Aminomalononitriles[J]. Acta Chimica Sinica, ;2020, 78(10): 1064-1068. doi: 10.6023/A20070296 shu

A New Strategy for the Synthesis of Tertiary Amides via a Copper-Catalyzed Decyanation Reaction of N, N-Disubstituted 2-Aminomalononitriles

  • Corresponding author: Yu Lan, yul@lzu.edu.cn Wang Shaohua, wangshh@lzu.edu.cn
  • Received Date: 7 July 2020
    Available Online: 8 September 2020

    Fund Project: Chinese patent pending 202010648789.7the National Natural Science Foundation of China 21472077Department of Education of Guangdong Province 2017KTSCX185Department of Education of Guangdong Province 2016KCXTD005Department of Education of Guangdong Province 2017KSYS010Department of Education of Guangdong Province 2019KZDXM035Project supported by the National Natural Science Foundation of China (Nos. 21472077, 21772071) and Department of Education of Guangdong Province (Nos. 2017KTSCX185, 2017KSYS010, 2016KCXTD005, 2019KZDXM035). Chinese patent pending (No. 202010648789.7)the National Natural Science Foundation of China 21772071

Figures(5)

  • The development of new synthetic methodology and reagent is always a hot topic in organic synthesis community. Among the strategies used, chemical property investigation of synthetic intermediates with multifunctional groups represents a direct and efficient way. In this paper, as a systematic continuation of α-aminomalononitrile based synthetic application studies, α-aminomalononitrile has been developed for the first time as a surrogate for carbamoyl anions and applied to the synthesis of tertiary amides via a copper-catalyzed decyanation reaction. This strategy features simple reaction conditions, scalability, and wide substrate scope. This work not only further enriches the reaction model of aminonitrile compounds, but also provides an alternative synthetic strategy for the synthesis of substituted amides from simple formamides. In this process, the substrates could be readily synthesized through the nucleophilic addition or substitution reaction of α-aminomalononitriles, and they would be converted to corresponding tertiary amide in the presence of CuF2 in DMSO. As an example, the formal hydrocarbamoylation reaction of unsaturated bonds could be achieved. A general procedure for the strategy is as follows:α-aminomalononitrile derived from formamide is used to undergo nucleophilic addition or substitution reaction with electrophilic reagents. Next, the two cyano groups of the synthesized substrates could be removed under the catalysis of CuF2 to form a C=O double bond in situ, thereby achieving the synthesis of corresponding tertiary amide. During the reaction, the α-aminomalononitrile substrate (0.4 mmol), CuF2 (5 mol%), DMSO (3 mL) were placed in a sealed reaction tube at 100℃ at an argon atmosphere for about 32 hours. Then, the reaction system was washed out with ethyl acetate, and the organic phase was washed with water to remove DMSO. Next, the aqueous phase was extracted with ethyl acetate. Finally all organic phases were combined, washed once with saturated brine. After drying the organic phase over anhydrous sodium sulfate, it was concentrated by a vacuum pump. Finally, the residue was purified by flash column chromatography to give amide product.
  • 加载中
    1. [1]

    2. [2]

      (a) Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Chem. Rev. 2016, 116, 5338. (b) Zolnowska, B.; Slawinski, J.; Garbacz, K.; Jarosiewicz, M.; Kawiak, A. Int. J. Mol. Sci. 2019, 21, 210. (c) Wilhelm, E. A.; Torres, M.; Pereira, C. F.; Vogt, A. G.; Cervo, R.; Dos Santos, B. G. T.; Cargnelutti, R.; Luchese, C. Can. J. Physiol. Pharmacol. 2019, 98, 304. (d) Wilt, S. R.; Rodriguez, M.; Le, T. N.; Baltodano, E. V.; Salas, A.; Pecic, S. Chem. Biol. Drug Des. 2020, 95, 534. (e) Zheng, Q.; Peng, X.; Zhang, Y. BMC Anesthesiol. 2020, 20, 43. (f) Zhou, Y.; Gu, Z.; Liu, J.; Huang, K.; Liu, G.; Wu, J. Carbohydr. Polym. 2020, 230, 115640.

    3. [3]

      (a) Guo, X.; Facchetti, A.; Marks, T.-J. Chem. Rev. 2014, 114, 8943. (b) Jiang, G.-L.; Wang, D.-Y.; Du, H.-P.; Wu, X.; Zhang, Y.; Tan, Y.-Y.; Wu, L.; Liu, J.-G.; Zhang, X. Polymers (Basel, Switz.), 2020, 12, 413. (c) Liu, J.; Chen, T.-W.; Yang, Y. L.; Bai, Z. C.; Xia, L.-R.; Wang, M.; Lv, X.-L.; Li, L. Carbohydr. Polym. 2020, 230, 115619. (d) Materna, K. L.; Lalaoui, N.; Laureanti, J. A.; Walsh, A. P.; Rimgard, B. P.; Lomoth, R.; Thapper, A.; Ott, S.; Shaw, W. J.; Tian, H.; Hammarstrom, L. ACS Appl. Mater. Interfaces 2020, 12, 4501.

    4. [4]

      Wu, Z.; Du, Y.; Zhou, Q.; Chen, L. Pestic. Biochem. Physiol. 2020, 163, 51.  doi: 10.1016/j.pestbp.2019.10.003

    5. [5]

    6. [6]

      (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016. (c) Newton, C.-G.; Wang, S.-G.; Oliveira, C.-C.; Cramer, N. Chem. Rev. 2017, 117, 8908. (d) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333. (e) Kalck, P.; Urrutigoïty, M. Chem. Rev. 2018, 118, 3833. (f) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192.

    7. [7]

      (a) Friedman, L.; Shechter, H. Tetrahedron Lett. 1961, 2, 238. (b) Angioni, S.; Ravelli, D.; Emma, D.; Dondi, D.; Fagnoni, M.; Albini, A. Adv. Synth. Catal. 2008, 350, 2209.

    8. [8]

      Tsuji, Y.; Yoshii, S.; Ohsumi, T.; Kondo, T.; Watanabe, Y. J. Organomet. Chem. 1987, 331, 379.  doi: 10.1016/0022-328X(87)80009-8

    9. [9]

      Kondo, T.; Okada, T.; Mitsudo, T.a. Organometallics 1999, 18, 4123.  doi: 10.1021/om990373c

    10. [10]

      Nath, D. C. D.; Fellows, C. M.; Kobayashi, T.; Hayashi, T. Aust. J. Chem. 2006, 59, 218.  doi: 10.1071/CH06010

    11. [11]

      Ko, S.; Han, H.; Chang, S. Org. Lett. 2003, 5, 2687.  doi: 10.1021/ol034862r

    12. [12]

      (a) Nakao, Y.; Idei, H.; Kanyiva, K.S.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 5070. (b) Miyazaki, Y.; Yamada, Y.; Nakao, Y.; Hiyama, T. Chem. Lett. 2012, 41, 298.

    13. [13]

      Fujihara, T.; Katafuchi, Y.; Iwai, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2010, 132, 2094.  doi: 10.1021/ja910038p

    14. [14]

      (a) Kobayashi, Y.; Kamisaki, H.; Yanada, K.; Yanada, R.; Takemoto, Y. Tetrahedron Lett. 2005, 46, 7549. (b) Nakao, Y.; Morita, E.; Idei, H.; Hiyama, T. J. Am. Chem. Soc. 2011, 133, 3264. (c) Donets, P.A.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 11772. (d) Armanino, N.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 6814. (e) Correia, V. G.; Abreu, J. C.; Barata, C. A. E.; Andrade, L.H. Org. Lett. 2017, 19, 1060.

    15. [15]

      Mou, X.-Q.; Xu, L.; Wang, S.-H.; Yang, C. Tetrahedron Lett. 2015, 56, 2820.  doi: 10.1016/j.tetlet.2015.04.056

    16. [16]

      Mou, X.-Q.; Xu, Z.-L.; Xu, L.; Wang, S.-H.; Zhang, B.-H.; Zhang, D.; Wang, J.; Liu, W.T.; Bao, W. Org. Lett. 2016, 18, 4032.  doi: 10.1021/acs.orglett.6b01883

    17. [17]

      Zhang, B.-H.; Lei, L.-S.; Liu, S.-Z.; Mou, X.-Q.; Liu, W.-T.; Wang, S.-H.; Wang, J.; Bao, W.; Zhang, K. Chem. Commun. 2017, 53, 8545.  doi: 10.1039/C7CC04610C

    18. [18]

      Bao, W.; Gao, Z.-P.; Jin, D.-P.; Xue, C.-G.; Liang, H.; Lei, L.-S.; Xu, X.-T.; Zhang, K.; Wang, S.-H. Chem. Commun. 2020, 56, 7641.  doi: 10.1039/D0CC01591A

    19. [19]

      Lei, L.-S.; Xue, C.-G.; Xu, X.-T.; Jin, D.-P.; Wang, S.-H.; Bao, W.; Liang, H.; Zhang, K.; Asiri, A. M. Org. Biomol. Chem. 2019, 17, 3723.  doi: 10.1039/C9OB00510B

    20. [20]

      Lei, L.-S.; Wang, B.-W.; Jin, D.-P.; Gao, Z.-P.; Liang, H.; Wang, S.-H.; Xu, X.-T.; Zhang, K.; Zhang, X.-Y. Adv. Synth. Catal. 2020, 362, 2870.  doi: 10.1002/adsc.202000261

  • 加载中
    1. [1]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    6. [6]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    8. [8]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    17. [17]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(4)
  • Abstract views(782)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return