Citation: Liu Qianyi, Zhang Lei, Mo Fanyang. Organic Borylation Reactions via Radical Mechanism[J]. Acta Chimica Sinica, ;2020, 78(12): 1297-1308. doi: 10.6023/A20070294 shu

Organic Borylation Reactions via Radical Mechanism

  • Corresponding author: Mo Fanyang, fmo@pku.edu.cn
  • Received Date: 7 July 2020
    Available Online: 31 July 2020

    Fund Project: the National Natural Science Foundation of China 21772003the National Natural Science Foundation of China 21933001Project supported by the National Natural Science Foundation of China (Nos. 21772003 and 21933001)

Figures(20)

  • Organoboronic acids and esters are highly valuable building blocks in cross-coupling reactions and practical intermediates of various functional group transformations. Additionally, organoboronic acids can be utilized directly as small molecule drugs. Therefore, development of efficient methods to synthesize organoboronic compounds is of significant importance. Traditional pathways to synthesize organoboronic compounds mainly rely on electrophilic borylation of organometallic reagent and transition-metal-catalyzed borylation. Radical intermediates have unique chemical properties which are quite different from those of polar intermediates resulted from the heterolysis of chemical bonds and those of the organometallic compounds during transition metal catalysis. As such, borylation based on radical mechanism possesses distinctive reaction process, substrate scope, reaction selectivity, etc., and have great potential in synthesis of organoboronic compounds. In 2010, the Wang's group first reported borylation via a radical mechanism. This method realized an efficient direct conversion of anilines into aryl organoboronic esters. Inspired by this innovative work, more and more borylation methods via radical intermediates have been reported and developed as new avenues for C-B bond formation in the past decade. A series of studies show that organoboronic acids and esters could be efficiently constructed by the reaction of aryl/alkyl radicals with diboron compounds. In this paper, we summarize the recent development of borylation reactions via radical mechanisms, including aryl and alkyl radical borylation. As for aryl radical borylation, the activation of substrates containing C-N, C-O, C-S, C-X (X=halogen) bonds and carboxylic acids to C-B bond is summarized respectively. As for alkyl radical borylation, the activation of substrates containing C-N, C-O, C-X (X=halogen), C-C bonds and carboxylic acids to C-B bond is summarized respectively. Finally, we provide a perspective on the future development direction of this research area.
  • 加载中
    1. [1]

      (a) Barth, R. F.; Kabalka, G. W.; Yang, W.; Huo, T.; Nakkula, R. J.; Shaikh, A. L.; Haider, S. A.; Chandra, S. Appl. Radiat. Isotopes 2014, 88, 38; (b) Barth, R. F.; Mi, P.; Yang, W. Cancer Commun. 2018, 38, 35.

    2. [2]

      (a) San Miguel, J. F.; Schlag, R.; Khuageva, N. K.; Dimopoulos, M. A.; Shpilberg, O.; Kropff, M.; Spicka, I.; Petrucci, M. T.; Palumbo, A.; Samoilova, O. S.; Dmoszynska, A.; Abdulkadyrov, K. M.; Schots, R.; Jiang, B.; Mateos, M. V.; Anderson, K. C.; Esseltine, D. L.; Liu, K.; Cakana, A.; Van De Velde, H.; Richardson, P. G. New Engl. J. Med. 2008, 359, 906; (b) Beenen, M. A.; An, C.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 6910.

    3. [3]

      (a) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem. Int. Ed. 2001, 40, 4544; (b) Moreno-Maas, M.; Pérez, M.; Pleixats, R. J. Org. Chem. 1996, 61, 2346.

    4. [4]

      (a) Miyaura, N.; Suzuki, A., J. Chem. Soc. Chem. Commun. 1979, 866; (b) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437.

    5. [5]

      (a) Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum, G. A. J. Med. Chem. 2016, 59, 4385; (b) Bostrm, J.; Brown, D. G.; Young, R. J.; Keserü, G. M. Nat. Rev. Drug Discov. 2018, 17, 709.

    6. [6]

      Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027.

    7. [7]

      (a) Liu, M.; Su, S.-J.; Jung, M.-C.; Qi, Y.; Zhao, W.-M.; Kido, J. Chem. Mater. 2012, 24, 3817; (b) Wong, K.-T.; Hung, T. S.; Lin, Y.; Wu, C.-C.; Lee, G.-H.; Peng, S.-M.; Chou, C. H.; Su, Y. O. Org. Lett. 2002, 4, 513.

    8. [8]

      (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933; (b) Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937; (c) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941; (d) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett. 2000, 2, 2019.

    9. [9]

      Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett. 1993, 34, 583.

    10. [10]

      Wu, P.; Givskov, M.; Nielsen, T. E. Chem. Rev. 2019, 119, 11245.

    11. [11]

      (a) Brown, H. C.; Cole, T. E. Organometallics. 1983, 2, 1316; (b) Brown, H. C.; Srebnik, M.; Cole, T. E. Organometallics. 1986, 5, 2300.

    12. [12]

      Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.

    13. [13]

      Li, Z.; Zheng, J.; Li, C.; Wu, W.; Jiang, H. Chin. J. Chem. 2019, 37, 140.

    14. [14]

      Yoshida, H. ACS Catal. 2016, 6, 1799.

    15. [15]

      Li, S.; Li, J.; Xia, T.; Zhao, W. Chin. J. Chem. 2019, 37, 462.

    16. [16]

      He, Z.; Fan, M.; Xu, J.; Hu, Y.; Wang, L.; Wu, X.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2019, 39, 3438.

    17. [17]

      Wang, M.; Shi, Z. Chem. Rev. 2020, DOI: 10.1021/acs.chemrev.9b00384.  doi: 10.1021/acs.chemrev.9b00384.

    18. [18]

      (a) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000, 287, 1995; (b) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890; (c) Jiang, Z.-T.; Wang, B.-Q.; Shi, Z.-J. Chin. J. Chem. 2018, 36, 950; (d) Zhan, M.; Song, P.; Jiao, J.; Li, P. Chin. J. Chem. 2020, 38, 665.

    19. [19]

      (a) (a) Xiao, L. Li, J.-H, Wang, T. Acta Chim. Sinica, 2019, 77, 841(in Chinese). (肖丽, 李嘉恒, 王挺, 化学学报 2019, 77, 841.) (b) Ye, S.-Q, Wu, J. Acta Chim. Sinica, 2019, 77, 814(in Chinese). (叶盛青, 吴劼, 化学学报 2019, 77, 814.)

    20. [20]

      Mo, F.; Jiang, Y.; Qiu, D.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2010, 49, 1846.

    21. [21]

      Qiu, D.; Jin, L.; Zheng, Z.; Meng, H.; Mo, F.; Wang, X.; Zhang, Y.; Wang, J. J. Org. Chem. 2013, 78, 1923.

    22. [22]

      (a) Yu, J.; Zhang, L.; Yan, G. Adv. Synth. Catal. 2012, 354, 2625; (b) Zhu, C.; Yamane, M. Org. Lett. 2012, 14, 4560; (c) Erb, W.; Hellal, A.; Albini, M.; Rouden, J.; Blanchet, J. Chem. Eur. J. 2014, 20, 6608; (d) Marciasini, L. D.; Vaultier, M.; Pucheault, M. Tetrahedron Lett. 2014, 55, 1702; (e) Zhao, C.-J.; Xue, D.; Jia, Z.-H.; Wang, C.; Xiao, J. Synlett 2014, 25, 1577; (f) Ahammed, S.; Nandi, S.; Kundu, D.; Ranu, B. C. Tetrahedron Lett. 2016, 57, 1551; (g) Qi, X.; Jiang, L.-B.; Zhou, C.; Peng, J.-B.; Wu, X.-F. ChemistryOpen 2017, 6, 345; (h) Xu, Y.; Yang, X.; Fang, H. J. Org. Chem. 2018, 83, 12831.

    23. [23]

      Teders, M.; Gómez-Suárez, A.; Pitzer, L.; Hopkinson, M. N.; Glorius, F. Angew. Chem. Int. Ed. 2017, 56, 902.

    24. [24]

      Ma, Y.; Pang, Y.; Chabbra, S.; Reijerse, E. J.; Schnegg, A.; Niski, J.; Leutzsch, M.; Cornella, J. Chem. Eur. J. 2020, 26, 3738.

    25. [25]

      Chen, K.; Cheung, M. S.; Lin, Z.; Li, P. Org. Chem. Front. 2016, 3, 875.

    26. [26]

      Liu, W.; Yang, X.; Gao, Y.; Li, C.-J. J. Am. Chem. Soc. 2017, 139, 8621.

    27. [27]

      Jin, S.; Dang, H. T.; Haug, G. C.; He, R.; Nguyen, V. D.; Nguyen, V. T.; Arman, H. D.; Schanze, K. S.; Larionov, O. V. J. Am. Chem. Soc. 2020, 142, 1603.

    28. [28]

      Candish, L.; Teders, M.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 7440.

    29. [29]

      Cheng, W.-M.; Shang, R.; Zhao, B.; Xing, W.-L.; Fu, Y. Org. Lett. 2017, 19, 4291.

    30. [30]

      Dai, P.-F.; Ning, X.-S.; Wang, H.; Cui, X.-C.; Liu, J.; Qu, J.-P.; Kang, Y.-B. Angew. Chem. Int. Ed. 2019, 58, 5392.

    31. [31]

      Berger, F.; Plutschack, M. B.; Riegger, J.; Yu, W.; Speicher, S.; Ho, M.; Frank, N.; Ritter, T. Nature 2019, 567, 223.

    32. [32]

      Huang, C.; Feng, J.; Ma, R.; Fang, S.; Lu, T.; Tang, W.; Du, D.; Gao, J. Org. Lett. 2019, 21, 9688.

    33. [33]

      Zhang, J.; Wu, H.-H.; Zhang, J. Eur. J. Org. Chem. 2013, 2013, 6263.

    34. [34]

      Hong, J.; Liu, Q.; Li, F.; Bai, G.; Liu, G.; Li, M.; Nayal, O. S.; Fu, X.; Mo, F. Chin. J. Chem. 2019, 37, 347.

    35. [35]

      Chen, K.; Zhang, S.; He, P.; Li, P. Chem. Sci. 2016, 7, 3676.

    36. [36]

      Mfuh, A. M.; Doyle, J. D.; Chhetri, B.; Arman, H. D.; Larionov, O. V. J. Am. Chem. Soc. 2016, 138, 2985.

    37. [37]

      Mukai, K.; de Sant'Ana, D. P.; Hirooka, Y.; Mercado-Marin, E. V.; Stephens, D. E.; Kou, K. G. M.; Richter, S. C.; Kelley, N.; Sarpong, R. Nat. Chem. 2018, 10, 38.

    38. [38]

      Zhang, L.; Jiao, L. J. Am. Chem. Soc. 2017, 139, 607.

    39. [39]

      Zhang, L.; Jiao, L. Chem. Sci. 2018, 9, 2711.

    40. [40]

      Pinet, S.; Liautard, V.; Debiais, M.; Pucheault, M. Synthesis 2017, 49, 4759.

    41. [41]

      Hu, D.; Wang, L.; Li, P. Org. Lett. 2017, 19, 2770.

    42. [42]

      Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283.

    43. [43]

      Wang, J.; Shang, M.; Lundberg, H.; Feu, K. S.; Hecker, S. J.; Qin, T.; Blackmond, D. G.; Baran, P. S. ACS Catal. 2018, 8, 9537.

    44. [44]

      Wei, D.; Liu, T.-M.; Zhou, B.; Han, B. Org. Lett. 2020, 22, 234.

    45. [45]

      (a) Wu, J.; He, L.; Noble, A.; Aggarwal, V. K. J. Am. Chem. Soc. 2018, 140, 10700; (b) Sandfort, F.; Strieth-Kalthoff, F.; Klauck, F. J. R.; James, M. J.; Glorius, F. Chem. Eur. J. 2018, 24, 17210.

    46. [46]

      Hu, J.; Wang, G.; Li, S.; Shi, Z. Angew. Chem. Int. Ed. 2018, 57, 15227.

    47. [47]

      Friese, F. W.; Studer, A. Angew. Chem. Int. Ed. 2019, 58, 9561.

    48. [48]

      Wu, J.; Bär, R. M.; Guo, L.; Noble, A.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2019, 58, 18830.

    49. [49]

      Cheng, Y.; Mück-Lichtenfeld, C.; Studer, A. Angew. Chem. Int. Ed. 2018, 57, 16832.

    50. [50]

      Liu, Q.; Hong, J.; Sun, B.; Bai, G.; Li, F.; Liu, G.; Yang, Y.; Mo, F. Org. Lett. 2019, 21, 6597.

    51. [51]

      Zhang, L.; Wu, Z.-Q.; Jiao, L. Angew. Chem. Int. Ed. 2020, 59, 2095.

    52. [52]

      Zhang, J.-J.; Duan, X.-H.; Wu, Y.; Yang, J.-C.; Guo, L.-N. Chem. Sci. 2019, 10, 161.

    53. [53]

      Neeve, E. C.; Geier, S. J.; Mkhalid, I. A. I.; Westcott, S. A.; Marder, T. B. Chem. Rev. 2016, 116, 9091.

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(293)
  • Abstract views(6742)
  • HTML views(2146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return