Citation: Dong Jinlong, Shen Lazhen, Wen Bin, Song Zhen, Feng Junjie, Liang Gang, Liu Bin, Yang Binsheng. Synthesis of A Novel Anti-diabetes Chromium(Ⅲ) Complex and Investigation of Its Biological Activity and Mechanism[J]. Acta Chimica Sinica, ;2020, 78(11): 1260-1267. doi: 10.6023/A20070285 shu

Synthesis of A Novel Anti-diabetes Chromium(Ⅲ) Complex and Investigation of Its Biological Activity and Mechanism

  • Corresponding author: Dong Jinlong, dongjinlong20123@163.com Yang Binsheng, yangbs@sxu.edu.cn
  • Received Date: 2 July 2020
    Available Online: 3 September 2020

    Fund Project: the Science and Technology Innovation Project of Colleges and Universities in Shanxi Province 2019L0818the Natural Science Foundation of Shanxi Province No. 201801D121064the the National Natural Science Foundation of China 21571117Project supported by the the National Natural Science Foundation of China (Nos. 21571117, 21701121), the Natural Science Foundation of Shanxi Province (No. 201801D121064), the Science and Technology Innovation Project of Colleges and Universities in Shanxi Province (No. 2019L0818), and the Innovation Project for College Students in Shanxi Province (No. CXCY1905)the the National Natural Science Foundation of China 21701121the Innovation Project for College Students in Shanxi Province CXCY1905

Figures(11)

  • In order to search for novel anti-diabetes molecules, phenformin (Phf) was used as precursors to prepare chromium(Ⅲ) complex [Cr(Phf)3]Cl3 at room temperature. The complex was characterized by elemental analysis (EA), molar conductivity (MC), electrospray ionization mass spectrometry (ESI-MS), infrared (IR), UV-vis and NMR spectroscopy, respectively. In this work, the stability of complex solutions at different temperatures and pH values, reactivity with H2O2 were discussed in detail. The morphology and thermal studies of the complex were also investigated. Meanwhile, C57 diabetic mouse model induced by diet combined with streptozocin (STZ) was established to explore its biological activity from the aspects of fasting blood glucose (FBG), fasting serum insulin (FINS), total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c) levels, and oral toxicity. Afterwards, in order to explore the biological hypoglycemic mechanism of the complex, the interaction between the complex and glucagon was studied at (37±0.5) ℃ in Phosphate Buffer Saline (PBS) buffer at pH 7.4 by fluorescence spectra, which the conditional binding constant K is 1.29×105 L·mol-1, and the number of binding sites n is about 1. As a result, the interaction between the complex and glucagon was static quenching. The complex which retained the glucose-lowering properties of Phf exhibited good physical and chemical properties, beneficial function on blood glucose and lipid metabolism for Type Ⅱ Diabetes mellitus (T2DM). The glucose-lowering mechanism of the complex was proposed, and the multi-functional application of metal complex in glucose-lowering and lipid-controlling was also achieved. Furthermore, oral toxicity results showed that the complex had no toxicity on all organs of mice. Methyl Thiazolyl Tetrazolium (MTT) assays also showed that the complex exhibited lower cytotoxicity than the positive control CrCl3 and Phf. Taken together, these results demonstrated that the non-toxic [Cr(Phf)3]Cl3 complex might be a potential candidate for novel anti–diabetic drug development. It may also provide a new idea for the prevention and treatment of type 2 diabetes.
  • 加载中
    1. [1]

      Yu, J. C.; Wang, J. Q.; Zhang, Y. Q.; Chen, G. J.; Mao, W.; Ye, Y. Q.; Kahkoska, A. R.; Buse, J. B.; Langer, R.; Gu, Z. Nat. Biomed. Eng. 2020, 4, 499.  doi: 10.1038/s41551-019-0508-y

    2. [2]

      WilIiamson, R. M.; Price, J. F.; Glancy, S.; Perry, E.; Nee, L. D.; Hayes, P. C.; Frier, B. M.; Van Look, L. A. F.; Johnston, G. I.; Reynolds, R. M.; Mark, W. J. Diabetes Care. 2011, 34, 1139.  doi: 10.2337/dc10-2229

    3. [3]

      Samuel, V. T.; Liu, Z. X.; Qu, X. Q.; Elder, B. D.; Bilz, S.; Befroy, D.; Romanelli, A. J.; Shulman, G. I. J. Biol. Chem. 2004, 279, 32345.  doi: 10.1074/jbc.M313478200

    4. [4]

      Xu, B.; Broome, U.; Uzunel M.; Nava, S.; Ge, X. P.; Kumagai-Braesch, M.; Hultenby, K.; Christensson, B.; Ericzon, B.; Holgersson, J.; Sumitran-Holgersson, S. Am J. Pathol. 2003, 163, 1275.  doi: 10.1016/S0002-9440(10)63487-6

    5. [5]

      Farrell, G. C.; Chitmri, S.; Lau, G. K.; Sollano, J. D. J. Gastroen Hepatol. 2007, 22, 775.  doi: 10.1111/j.1440-1746.2007.05002.x

    6. [6]

      Hidenobu, S.; Tomoyo, N.; Yusuke, I.; Satoru, H.; Ryoma, N.; Makoto, O. Molecules 2019, 24, 3131.  doi: 10.3390/molecules24173131

    7. [7]

      Evans, J. L.; Maddux, B. A.; Goldfine, I. D. Antioxid. Redox. Sign. 2005, 7, 1040.  doi: 10.1089/ars.2005.7.1040

    8. [8]

      Pechova, A.; Pavlata, L. Vet Med. 2007, 52, 1.

    9. [9]

      Hua, Y. A.; Clark, S.; Ren, J.; Sreejayan, N. J. Nutr. Biochem. 2012, 23, 313.  doi: 10.1016/j.jnutbio.2011.11.001

    10. [10]

      Yang, X. P.; Palanichamy, K.; Ontko, A. C.; Rao, M. N. A.; Fang, C. X.; Ren, J.; Sreejayan, N. FEBS Lett. 2005, 579, 1458.  doi: 10.1016/j.febslet.2005.01.049

    11. [11]

      Duan, W. S.; Liu, B.; Sun, Z. G.; Yang, B. S. Acta Chim. Sinica 2011, 69, 1789(in Chinese).
       

    12. [12]

      Nan, J. X.; Liu, B.; Yang, B. S. Acta Chim. Sinica 2011, 69, 640(in Chinese).
       

    13. [13]

      Liu, B.; Sun, Z. G.; Yang, B. S. Acta Chim. Sinica 2008, 66, 2353(in Chinese).
       

    14. [14]

      Liu, B.; Li, Y. Q.; Yang, B. S. Acta Chim. Sinica 2006, 64, 917(in Chinese).
       

    15. [15]

      Cho, Y. M.; Merchant, C. E.; Kieffer, T. J. Pharmacol. Therapeut. 2012, 135, 247.  doi: 10.1016/j.pharmthera.2012.05.009

    16. [16]

      Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th ed., Wiley, New York, 1997.

    17. [17]

      Adam, A. M. A.; Sharshar, T.; Mohamed, M. A.; Ibrahim, O. B.; Refat, M. S. Spectrochim. Acta A 2015, 149, 323.  doi: 10.1016/j.saa.2015.04.115

    18. [18]

      Hamada, Y. Z.; Carlson, B. L.; Shank, J. T. Synth. React. Inorg. Met. Org. Chem. 2003, 33, 1425.  doi: 10.1081/SIM-120024320

    19. [19]

      Chen, J. M.; Hao, O. J. Crit. Rev. Env. Sci. Tec. 1998, 28, 219.  doi: 10.1080/10643389891254214

    20. [20]

      Andersen, J. E. T. Anal. Chim. Acta 1998, 361, 125.  doi: 10.1016/S0003-2670(98)00041-5

    21. [21]

      Irma, M.; Aviva, L.; Lay, P. A. Angew. Chem. Int. Ed. 2004, 43, 4504.  doi: 10.1002/anie.200460113

    22. [22]

      Levina, A.; Lay, P. A. Coord. Chem. Rev. 2005, 249, 281.  doi: 10.1016/j.ccr.2004.02.017

    23. [23]

      Pettine, M.; Lanoce, T.; Liberatori, A.; Loreti, L. Anal. Chim. Acta 1988, 209, 315.  doi: 10.1016/S0003-2670(00)84579-1

    24. [24]

      Dong, J. L.; Liu, B.; Liang, G.; Yang, B. S. J. Coord. Chem. 2018, 4, 1526.

    25. [25]

      Yang, B. S.; Yang, P. Chin. Sci. Bull. 1984, 29, 1066(in Chinese).

    26. [26]

      Shrivastava, H. Y.; Nair, B. U. J. Inorg. Biochem. 2004, 98, 991.  doi: 10.1016/j.jinorgbio.2004.02.014

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(8)
  • Abstract views(950)
  • HTML views(256)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return