Citation: Yang Zhice, Tian Jianan, Cai Hongxue, Li Li, Pan Qingjiang. Theoretical Probe for Tris(aryloxide)arene Complexed Low-valent Actinide Ions and Their Structural/Redox Properties[J]. Acta Chimica Sinica, ;2020, 78(10): 1096-1101. doi: 10.6023/A20070284 shu

Theoretical Probe for Tris(aryloxide)arene Complexed Low-valent Actinide Ions and Their Structural/Redox Properties

  • Corresponding author: Pan Qingjiang, panqjitc@163.com
  • Received Date: 2 July 2020
    Available Online: 3 August 2020

    Fund Project: The Natural Science Foundation of Heilongjiang Province LH2019B029Project supported by the National Natural Science Foundation of China (No. 21671060), the Natural Science Foundation of Heilongjiang Province (No. LH2019B029) and the Heilongjiang Touyan Innovation Team ProgramThe National Natural Science Foundation of China 21671060

Figures(5)

  • It is of great significance to identify new oxidation state of actinide, which will enrich actinide coordination chemistry and advance its exploration of chemical bond and reactivity. So far, uranium with +3~+6 oxidation states has been widely recognized in complexes. Comparatively, isolated, crystallographically identified U(Ⅱ) complexes remain rare. Inspired by the pioneering work of Evans and co-workers that Y·[U(Cp')3] (Y=[K(2.2.2-cryptand)]+, Cp'=[C5H4SiMe3]-) was structurally characterized, several uranium(Ⅱ) complexes such as Y·[ULE] (LE=[(Ad, MeArO)3 mesitylene]3-, Ad=adamantyl), [U(NHAriPr6)2] (AriPr6=2, 6-(2, 4, 6-iPr3C6H2)2C6H3), Y·[U{N(SiMe3)2}3] and[U(η5-C5iPr5)2] were synthetically accessible. Inspection finds that all these U(Ⅱ) complexes were prepared in the same route, i.e., utilizing potassium graphite or potassium sphere to reduce respective U(Ⅲ) parent at low temperature. Cyclopentadiene (Cp) and arene (Ar)-based ligands are involved. They are key to determine U(Ⅱ) electron configuration, leading to 5f36d1 and 5f4, respectively. Moreover, δ(U-Ar) bonds play a significant role in stabilizing arene-ligated complexes. With the supporting of Cp-derived ligands, actinide(Ⅱ) complexes were extended to Th, Np and Pu. Unfortunately, it is not the case for the arene ligands, even with massive efforts. Given the prevailing route that actinide(Ⅱ) complex was synthesized by reducing its trivalent parent, the exploration of redox property will help to guide the synthesis of more novel U(Ⅱ) and even other actinide(Ⅱ) complexes. In this respect, theoretical computation based on accurate methodology is greatly appealing. Herein, relativistic density functional theory was exploited to investigate structural and redox properties of[AnL]z (An=Ac~Pu; L=[(Me, MeArOH)3Ar]3-; z=0 and -1), where analogues of uranium complexes were experimentally known. It is found that the central arene moiety is redox-active for Ac and Th complexes in the reduction reaction, while the metal center is reduced for other complexes. So Ac and Th in reduced products still remain +3 oxidation states, whereas metals in others turn +2. The 5fn electronic configuration is unraveled for actinide of[AnL]- (An=Pa~Pu), having 3~6 electrons, respectively. Calculated redox potential (E0) increases from Ac to Pu in general, where U and Np show lower values than adjacent elements. A good correlation has been built between E0 and Δ(An-CAr/An-Arcent)/electron affinity. In brief, the study is expected to provide theoretical support for the synthesis of novel arene-based actinide(Ⅱ) complexes.
  • 加载中
    1. [1]

      Wang, X.; Liu, Y., Nuclear Chemistry and Radiochemistry, Beijing University Press, 2007 (in Chinese).

    2. [2]

      Schaedle, D.; Anwander, R. Chem. Soc. Rev. 2019, 48, 5752.  doi: 10.1039/C8CS00932E

    3. [3]

      Wang, D.; van Gunsteren, W. F.; Chai, Z. Chem. Soc. Rev. 2012, 41, 5836.  doi: 10.1039/c2cs15354h

    4. [4]

      Shi, W.-Q.; Yuan, L.-Y.; Wang, C.-Z.; Wang, L.; Mei, L.; Xiao, C.-L.; Zhang, L.; Li, Z.-J.; Zhao, Y.-L.; Chai, Z.-F. Adv. Mater. 2014, 26, 7807.  doi: 10.1002/adma.201304323

    5. [5]

      Wang, N.; Pang, H.; Yu, S.; Gu, P.; Song, S.; Wang, H.; Wang, X. Acta Chim. Sinica 2019, 77, 143 (in Chinese).
       

    6. [6]

      Yue, G.; Gao, R.; Zhao, P.; Chu, M.; Shuai, M. Acta Chim. Sinica 2016, 74, 657 (in Chinese).
       

    7. [7]

      MacDonald, M. R.; Fieser, M. E.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. J. Am. Chem. Soc. 2013, 135, 13310.  doi: 10.1021/ja406791t

    8. [8]

      La Pierre, H. S.; Scheurer, A.; Heinemann, F. W.; Hieringer, W.; Meyer, K. Angew. Chem. Int. Ed. 2014, 53, 7158.  doi: 10.1002/anie.201402050

    9. [9]

      Billow, B. S.; Livesay, B. N.; Mokhtarzadeh, C. C.; McCracken, J.; Shores, M. P.; Boncella, J. M.; Odom, A. L. J. Am. Chem. Soc. 2018, 140, 17369.  doi: 10.1021/jacs.8b10888

    10. [10]

      Ryan, A. J.; Angadol, M. A.; Ziller, J. W.; Evans, W. J. Chem. Commun. 2019, 55, 2325.  doi: 10.1039/C8CC08767A

    11. [11]

      Guo, F.-S.; Tsoureas, N.; Huang, G.-Z.; Tong, M.-L.; Mansikkamaeki, A.; Layfield, R. A. Angew. Chem. Int. Ed. 2020, 59, 2299.  doi: 10.1002/anie.201912663

    12. [12]

      Windorff, C. J.; MacDonald, M. R.; Meihaus, K. R.; Ziller, J. W.; Long, J. R.; Evans, W. J. Chem. Eur. J. 2016, 22, 772.  doi: 10.1002/chem.201503583

    13. [13]

      Moehring, S. A.; Evans, W. J. Chem. Eur. J. 2020, 26, 1530.  doi: 10.1002/chem.201905581

    14. [14]

      Huh, D. N.; Ziller, J. W.; Evans, W. J. Inorg. Chem. 2018, 57, 11809.  doi: 10.1021/acs.inorgchem.8b01966

    15. [15]

      Langeslay, R. R.; Fieser, M. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Chem. Sci. 2015, 6, 517.  doi: 10.1039/C4SC03033H

    16. [16]

      Su, J.; Windorff, C. J.; Batista, E. R.; Evans, W. J.; Gaunt, A. J.; Janicke, M. T.; Kozimor, S. A.; Scott, B. L.; Woen, D. H.; Yang, P. J. Am. Chem. Soc. 2018, 140, 7425.  doi: 10.1021/jacs.8b03907

    17. [17]

      Dutkiewicz, M. S.; Apostolidis, C.; Walter, O.; Arnold, P. L. Chem. Sci. 2017, 8, 2553.  doi: 10.1039/C7SC00034K

    18. [18]

      Windorff, C. J.; Chen, G. P.; Cross, J. N.; Evans, W. J.; Furche, F.; Gaunt, A. J.; Janicke, M. T.; Kozimor, S. A.; Scott, B. L. J. Am. Chem. Soc. 2017, 139, 3970.  doi: 10.1021/jacs.7b00706

    19. [19]

      Wu, Q. Y.; Lan, J. H.; Wang, C. Z.; Cheng, Z. P.; Chai, Z. F.; Gibson, J. K.; Shi, W. Q. Dalton Trans. 2016, 45, 3102.  doi: 10.1039/C5DT04540A

    20. [20]

      Chen, F.; Qu, N.; Wu, Q.; Zhang, H.; Shi, W.; Pan, Q. Acta Chim. Sinica 2017, 75, 457 (in Chinese).
       

    21. [21]

      Zhao, S.; Zhong, Y.; Guo, Y.; Zhang, H.; Pan, Q. Acta Chim. Sinica 2016, 74, 683 (in Chinese).
       

    22. [22]

      Zhang, X.; Wang, Y.; Morales-Martinez, R.; Zhong, J.; de Graaf, C.; Rodriguez-Fortea, A.; Poblet, J. M.; Echegoyen, L.; Feng, L.; Chen, N. J. Am. Chem. Soc. 2018, 140, 3907.  doi: 10.1021/jacs.7b10865

    23. [23]

      Ding, W.; Liu, Y.; Wang, D. Chem. Eur. J. 2018, 24, 19289.  doi: 10.1002/chem.201804072

    24. [24]

      Hu, H.-S.; Wei, F.; Wang, X.; Andrews, L.; Li, J. J. Am. Chem. Soc. 2014, 136, 1427.  doi: 10.1021/ja409527u

    25. [25]

      Wang, Y.-L.; Hu, H.-S.; Li, W.-L.; Wei, F.; Li, J. J. Am. Chem. Soc. 2016, 138, 1126.  doi: 10.1021/jacs.5b11793

    26. [26]

      Pyykko, P. J. Phys. Chem. A 2015, 119, 2326.  doi: 10.1021/jp5065819

    27. [27]

      Fieser, M. E.; Palumbo, C. T.; La Pierre, H. S.; Halter, D. P.; Voora, V. K.; Ziller, J. W.; Furche, F.; Meyer, K.; Evans, W. J. Chem. Sci. 2017, 8, 7424.  doi: 10.1039/C7SC02337E

    28. [28]

      Lewis, A. J.; Carroll, P. J.; Schelter, E. J. J. Am. Chem. Soc. 2013, 135, 13185.  doi: 10.1021/ja406610r

    29. [29]

      Elkechai, A.; Mani, Y.; Boucekkine, A.; Ephritikhine, M. Inorg. Chem. 2012, 51, 6943.  doi: 10.1021/ic300811m

    30. [30]

      Laikov, D. N.; Ustynyuk, Y. A. Russ. Chem. Bull. 2005, 54, 820.  doi: 10.1007/s11172-005-0329-x

    31. [31]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  doi: 10.1103/PhysRevLett.77.3865

    32. [32]

      Laikov, D. N. Chem. Phys. Lett. 2005, 416, 116.  doi: 10.1016/j.cplett.2005.09.046

    33. [33]

      Baerends, E. J.; Ziegler, T.; Autschbach, J.; Bashford, D.; Bérces, A.; Bickelhaupt, F. M.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, R. M.; Ellis, D. E.; van Faassen, M.; Fan, L.; Fischer, T. H.; Fonseca Guerra, C.; Franchini, M.; Ghysels, A.; Giammona, A.; van Gisbergen, S. J. A.; Gö tz, A. W.; Groeneveld, J. A.; Gritsenko, O. V.; Grüning, M.; Gusarov, S.; Harris, F. E.; van den Hoek, P.; Jacob, C. R.; Jacobsen, H.; Jensen, L.; Kaminski, J. W.; van Kesse, G.; Kootstra, F.; Kovalenko, A.; Krykunov, M. V.; van Lenthe, E.; McCormack, D. A.; Michalak, A.; Mitoraj, M.; Morton, S. M.; Neugebauer, J.; Nicu, V. P.; Noodleman, L.; Osinga, V. P.; Patchkovskii, S.; Pavanello, M.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek, W.; Rodríguez, J. I.; Ros, P.; Schipper, P. R. T.; van Schoot, H.; Schreckenbach, G.; Seldenthuis, J. S.; Seth, M.; Snijders, J. G.; Solà, M.; Swart, M.; Swerhone, D.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visscher, L.; Visser, O.; Wang, F.; Wesolowski, T. A.; van Wezenbeek, E. M.; Wiesenekker, G.; Wolff, S. K.; Woo, T. K.; Yakovlev, A. L., ADF (2014.06 version), SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2014.

    34. [34]

      Klamt, A.; Schuurmann, G. J. Chem. Soc., Perkin Trans. 1993, 799.

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(1)
  • Abstract views(630)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return