Citation: Zheng Bin, Cheng Sheng, Dong Huaze, Zhu Jinmiao, Han Yu, Yang Liang, Hu Jinming. Construction of Nitric Oxide (NO)-Responsive Fluorescent Polymer and Its Application in Cell Imaging[J]. Acta Chimica Sinica, ;2020, 78(10): 1089-1095. doi: 10.6023/A20060280 shu

Construction of Nitric Oxide (NO)-Responsive Fluorescent Polymer and Its Application in Cell Imaging

  • Corresponding author: Hu Jinming, jmhu@ustc.edu.cn
  • Received Date: 30 June 2020
    Available Online: 21 August 2020

    Fund Project: The Excellent Talent Foundation of Education Department of Anhui Province gxyq2019066Project supported by the National Natural Science Foundation of China (21504021), the Foundation of Educational Committee of Anhui Province (KJ2019A0719), the Excellent Talent Foundation of Education Department of Anhui Province (gxyq2019066), the Key R & D Program of Anhui Province (202004a07020020), and the 136 talent plan of Hefei Normal UniversityThe National Natural Science Foundation of China 21504021The Key R & D Program of Anhui Province 202004a07020020The Foundation of Educational Committee of Anhui Province KJ2019A0719

Figures(10)

  • Nitric oxide (NO) is a ubiquitous physiological signal messenger, but the use of NO as a trigger event to delicately tune the self-assembly behaviors of biomimetic polymers has been far less exploited. In this work, a single primary amine-containing 2-(3-(2-aminophenyl)ureido)ethyl methacrylate (APUEMA) monomer was first synthesized by the reaction between o-phenylenediamine and 2-isocyanatoethyl methacrylate. Then, the well-defined double hydrophilic block copolymer (DHBC), poly[oligo(ethylene glycol)methyl ether methacrylate]-b-poly[2-(3-(2-aminophenyl)ureido)ethyl methacrylate-co-4-(2-methylacryloyloxyethylamino)-7-nitro-2, 1, 3-benzoxadiazole)] (POEGMA-b-P(APUEMA-co-NBD)), was synthesized via sequential reversible addition-fragmentation chain transfer (RAFT) polymerization. Since there is a free amine group in the APUEMA monomer, it can be competent to quench the fluorescence of dyes and react with NO showing NO-responsiveness property. The reaction product of APUEMA and NO was purified by column chromatography, and 1H and 13C NMR results displayed the formation of urea-functionalized benzotriazole residual. The pKa values of APUEMA monomer and POEGMA-b-P(APUEMA-co-NBD) block polymer were measured to be 3.36 and 2.15, respectively, indicating that APUEMA monomer and PAPUEMA moieties of POEGMA-b-P(APUEMA-co-NBD) showed hydrophilic ability at acidic medium and hydrophobic ability at neutral medium. The aqueous solution of POEGMA-b-P(APUEMA-co-NBD) block copolymer exhibited a small diameter with about 5.0 nm at pH 2.0, which illustrates that block copolymer can dissolve into water with a unimer state. After changing the solution pH value to 7, the solution diameter increased to about 10 nm recorded by dynamic light scattering (DLS). Transmission electron microscope (TEM) results displayed micelles of POEGMA-b-P(APUEMA-co-NBD) block copolymer aqueous solution with spherical structures at pH 7.4. Furthermore, the fluorescence intensity of the block copolymer solution was decreased quickly after the pH value increased from 2 to 7. The NO-responsive property of block copolymer POEGMA-b-P(APUEMA-co-NBD) was also detected by DLS and fluorescent spectrometry methods. At pH 2.0, the diameter of the block copolymer aqueous solution increased from 5 nm to about 150 nm upon sparging with NO for 24 h. At pH 7.0, the diameter of block copolymer micelles increased from 10 nm to about 100 nm after exposure to NO for 24 h. The transmittance of POEGMA-b-P(APUEMA-co-NBD) block copolymer aqueous solution at pH 2.0 or pH 7.0 decreased upon NO addition, which were in accorded with DLS results. Moreover, the fluorescence intensity of the block copolymer solution at pH 2.0 improved rapidly upon sparging with NO for 0.5 h, implying that the NO-triggered self-assembly of micelles decreased environmental polarity. The fluorescence intensity decreased with further addition. The fluorescence intensity of block copolymer micelles at pH 7.0 exhibited 15-fold increased after addition with NO for 24 h. The in vitro study of block copolymer POEGMA-b-P(APUEMA-co-NBD) was conducted in normal MRC-5 cells. The block copolymer showed negligible cytotoxicity even at the block copolymer concentration of 100 g/mL. We herein report on a novel pH-responsive DHBC with unique NO-reactive feature, where NO can spontaneously trigger the self-assembly and morphological transformation in acidic and neutral milieus, respectively. After the introduction of fluorophores, these transitions are also associated with significant fluorescence turn-on due to eliminations of photoinduced electron transfer (PET) process in the presence of NO, imparting the opportunities to visualize intracellular NO.
  • 加载中
    1. [1]

      Culotta, E.; Koshland, D. E. Science 1992, 258, 1862.  doi: 10.1126/science.1361684

    2. [2]

      Szabo, C. Nat. Rev. Drug Discovery 2007, 6, 917.  doi: 10.1038/nrd2425

    3. [3]

      Chen, X. Q.; Tian, X. Z.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2011, 40, 4783.  doi: 10.1039/c1cs15037e

    4. [4]

      Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D. A.; Stella, A. M. Nat. Rev. Neurosci. 2007, 8, 766.  doi: 10.1038/nrn2214

    5. [5]

      Castegna, A.; Thongboonkerd, V.; Klein, J. B.; Lynn, B.; Markesbery, W. R.; Butterfield, D. A. J. Neurochem. 2003, 85, 1394.  doi: 10.1046/j.1471-4159.2003.01786.x

    6. [6]

      Carpenter, A. W.; Schoenfisch, M. H. Chem. Soc. Rev. 2012, 41, 3742.  doi: 10.1039/c2cs15273h

    7. [7]

      Roseand, M. J.; Mascharak, P. K. Curr. Opin. Chem. Biol. 2008, 12, 238.  doi: 10.1016/j.cbpa.2008.02.009

    8. [8]

      Klahr, S. Nephrol. Dial. Transpl. 2001, 16(Suppl 1), 60.

    9. [9]

      Cary, S. P. L.; Winger, J. A.; Derbyshire, E. R.; Marletta, M. A. Trends Biochem. Sci. 2006, 31, 231.  doi: 10.1016/j.tibs.2006.02.003

    10. [10]

      Handbook of Experimental Pharmacology, Vol. 143, Ed.: Mayer, B., Springer, Berlin, 2000.

    11. [11]

      Coneski, P. N.; Schoenfisch, M. H. Chem. Soc. Rev. 2012, 41, 3753.  doi: 10.1039/c2cs15271a

    12. [12]

      Bogdan, C. Nat. Immunol. 2001, 2, 907.  doi: 10.1038/ni1001-907

    13. [13]

      Bogdan, C. Trends Immunol. 2015, 36, 161.  doi: 10.1016/j.it.2015.01.003

    14. [14]

      Sun, Y. Q.; Liu, J.; Zhang, H.; Huo, Y.; Lv, X.; Shi, Y.; Guo,W. J. Am. Chem. Soc. 2014, 136, 12520.  doi: 10.1021/ja504156a

    15. [15]

      Sandipan, B. Y. R.; Shrabani, B.; Manoranjan, B.; Amrita, P.; Mahitosh, M.; Singh, N. D. P. Chem. Commun. 2018, 54, 7940.  doi: 10.1039/C8CC01854E

    16. [16]

      Mao, Z. Q.; Feng, W. Q.; Li, Z.; Zeng, L. Y.; Lv, W. J.; Liu, Z. H. Chem. Sci. 2016, 7, 5230.  doi: 10.1039/C6SC01313A

    17. [17]

      Deasai, A. V.; Samanta, P.; Manna, B.; Ghosh, S. K. Chem. Commun. 2015, 51, 6111.  doi: 10.1039/C5CC00773A

    18. [18]

      Lim, A. H.; Lippard, S. J. Acc. Chem. Res. 2007, 40, 41.  doi: 10.1021/ar950149t

    19. [19]

      Lim, M. H.; Xu, D.; Lippard, S. J. Nat. Chem. Biol. 2006, 2, 375.  doi: 10.1038/nchembio794

    20. [20]

      Hu, X.; Wang, J.; Zhu, X.; Dong, D.; Zhang, X.; Wu, S.; Duan, C. Chem. Commun. 2011, 47, 11507.  doi: 10.1039/c1cc14032a

    21. [21]

      Chen, Y.; Guo, W.; Ye, Z.; Wang, G.; Yuan, J. Chem. Commun. 2011, 47, 6266.  doi: 10.1039/c0cc05658h

    22. [22]

      Luzio, L. P.; Pryor, P. R.; Bright, N. A. Nat. Rev. Mol. Cell. Biol. 2007, 8, 622.  doi: 10.1038/nrm2217

    23. [23]

      Park, J. H.; Pramanick, S.; Kim, J.; Lee, J.; Kim, W. J. Chem. Commun. 2017, 53, 11229.  doi: 10.1039/C7CC06420A

    24. [24]

      Hu, J. M.; Whittaker, M. R.; Quinn, J. F.; Davis, T. P. Macromolecules 2016, 49, 2741.  doi: 10.1021/acs.macromol.6b00054

    25. [25]

      Zheng, D. B.; Gao, Z. F.; Xu, T. Y.; Liang, C. H.; Shi, Y.; Wang, L.; Yang, Z. M. Nanoscale 2018, 10, 21459.  doi: 10.1039/C8NR07534D

    26. [26]

      Nishikawa, Y.; Miki, T.; Awa, M.; Kuwata, K.; Tamura, T.; Hamachi, I. ACS Chem. Biol. 2019, 14, 397.  doi: 10.1021/acschembio.8b01021

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    12. [12]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(7)
  • Abstract views(1179)
  • HTML views(239)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return