Citation: Yu Mohan, Cheng Yuanyuan, Liu Yajun. Mechanistic Study of Oxygenation Reaction in Firefly Bioluminescence[J]. Acta Chimica Sinica, ;2020, 78(9): 989-993. doi: 10.6023/A20060269 shu

Mechanistic Study of Oxygenation Reaction in Firefly Bioluminescence

  • Corresponding author: Liu Yajun, yajun.liu@bnu.edu.cn
  • Received Date: 25 June 2020
    Available Online: 15 July 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21673020, 21973005, 21421003)the National Natural Science Foundation of China 21973005the National Natural Science Foundation of China 21421003the National Natural Science Foundation of China 21673020

Figures(4)

  • As the most common bioluminescence (BL), firefly BL, is of great significance in the fields of biotechnology, biomedicine and so on. The entire BL process involves a series of complicate in vivo chemical reactions. The BL is initiated by the enzymatic oxidation of luciferin. This is a spin-forbidden reaction of low efficiency, because that luciferin is in singlet state and O2 is in triplet state. However, firefly is till-now the most efficient system of converting chemical energy to light energy. Why this spin-forbidden reaction occurs efficiently? A single electron transfer (SET) mechanism has been confirmed on this reaction by experiments. However, there is lack of a complete and detailed description of the mechanism and reaction process. Via a calculation of density functional theory (DFT), this article described the complete process of this reaction. The oxygenation of luciferin is initiated by a SET from singlet L3- to triplet O2 to form RC 3[L·2-…O2·-]. Then the reaction is carried out on the potential energy surface (PES) of triplet state (T1), on which O2·- performs a nucleophilic attack on C4 of L·2-. There is an intersystem crossing between the ground (S0) and T1 PESs nearby the first transition state (TS1). After the ISC (intersystem crossing), the reaction continuously undergoes on the S0 PES to produce dioxetanone FDO- via two TSs and two intermediates (Ints). The analysis on electron densities and natural orbitals indicates that there is a quick reaction of biradical annihilation around the ISC. About 11.9 kcal·mol-1 energy is needed to reach the ISC before the whole reaction occurs on the S0 PES. The highest barrier of the reactions on the S0 PES is only 4.2 kcal·mol-1. The biradical annihilation around the ISC and the very low energy barriers explain the reason of the spin-forbidden reaction with high efficiency. This study is helpful for understanding the initiation of firefly BL and the other oxygen-dependent BL.
  • 加载中
    1. [1]

      Chen, F.; Liu, S.; Duan, X. Acta Chim. Sinica 2013, 71, 1035(in Chinese).
       

    2. [2]

      Wilson, T.; Hastings, J. W. Annu. Rev. Cell. Dev. Bi. 1998, 14, 197.  doi: 10.1146/annurev.cellbio.14.1.197

    3. [3]

      Haddock, S. H. D.; Moline, M. A.; Case, J. F. Annu. Rev. Mar. Sci. 2010, 2, 443.  doi: 10.1146/annurev-marine-120308-081028

    4. [4]

      Lee, J. Bioluminescence, the Nature of the Light, University of Georgia, 2020, pp. 102~114.
       

    5. [5]

      Ando, Y.; Niwa, K.; Yamada, N.; Enomot, T.; Irie, T.; Kubota, H.; Ohmiya, Y.; Akiyama, H. Nat. Photonics 2008, 2, 44.  doi: 10.1038/nphoton.2007.251

    6. [6]

      Wood, K. V. Photochem. Photobiol. 1995, 62, 662.  doi: 10.1111/j.1751-1097.1995.tb08714.x

    7. [7]

      Ugarova, N. N.; Brovko, L. Y. Luminescence 2002, 17, 321.  doi: 10.1002/bio.688

    8. [8]

      Schmidt, S. P.; Schuster, G. B. J. Am. Chem. Soc. 1978, 100, 1966.  doi: 10.1021/ja00474a074

    9. [9]

      Day, J. C.; Tisi, L. C.; Bailey, M. J. Luminescence 2004, 19, 8.  doi: 10.1002/bio.749

    10. [10]

      Navizet, I.; Liu, Y.-J.; Ferre, N.; Xiao, H.-Y.; Fang, W.-H.; Lindh, R. J. Am. Chem. Soc. 2010, 132, 706.  doi: 10.1021/ja908051h

    11. [11]

      Orlova, G.; Goddard, J. D.; Brovko, L. Y. J. Am. Chem. Soc. 2003, 125, 6962.  doi: 10.1021/ja021255a

    12. [12]

      Wilsey, S.; Bernardi, F.; Olivucci, M.; Robb, M. A.; Murphy, S.; Adam, W. J. Phys. Chem. A 1999, 103, 1669.  doi: 10.1021/jp9848086

    13. [13]

      Min, C.; Li, Z.; Cui, X.; Yang, X.; Huang, S.; Wang, S.; Ren, A. Chin. J. Org. Chem. 2015, 35, 432(in Chinese).
       

    14. [14]

      Yue, L.; Liu, Y.-J.; Fang, W.-H. J. Am. Chem. Soc. 2012, 134, 11632.  doi: 10.1021/ja302979t

    15. [15]

      Yue, L.; Lan, Z.; Liu, Y.-J. J. Phys. Chem. Lett. 2015, 6, 540.  doi: 10.1021/jz502305g

    16. [16]

      Cheng, Y.-Y.; Liu, Y.-J. ChemPhysChem 2019, 20, 1720.
       

    17. [17]

      Branching, B. R.; Rosenberg, J. C.; Fontaine, D. M.; Southworth, T. L.; Behney, C. E.; Uzasci, L. J. Am. Chem. Soc. 2011, 133, 11088.  doi: 10.1021/ja2041496

    18. [18]

      Marahiel, M. A.; Stachelhaus, T.; Mootz, H. D. Chem. Rev. 1997, 97, 2651.  doi: 10.1021/cr960029e

    19. [19]

      Westheimer, F. H. Science 1987, 235, 1173.  doi: 10.1126/science.2434996

    20. [20]

      Barrozo, A.; Blaha-Nelson, D.; Williams, N. H.; Kamerlin, S. C. L. Pure Appl. Chem. 2017, 89, 715.  doi: 10.1515/pac-2016-1125

    21. [21]

      Duarte, F.; qvist, J.; Williams, N. H.; Kamerlin, S. C. L. J. Am. Chem. Soc. 2015, 137, 1081.  doi: 10.1021/ja5082712

    22. [22]

      Duarte, F.; Barrozo, A.; qvist, J.; Williams, N. H.; Kamerlin, S. C. L. J. Am. Chem. Soc. 2016, 138, 10664.  doi: 10.1021/jacs.6b06277

    23. [23]

      Nelson, D. L.; Cox, M. M. Lehninger Principles of Biochemistry, 7th ed., W. H. Freeman and Company, New York, 2013, pp. 1370~1380.
       

    24. [24]

      Koo, J.-Y.; Schuster, G. B. J. Am. Chem. Soc. 1977, 99, 6107.  doi: 10.1021/ja00460a050

    25. [25]

      Branchini, B. R.; Behney, C. E.; Southworth, T. L.; Fontaine, D. M.; Gulick, A. M.; Vinyard, D. J.; Brudvig, G. W. J. Am. Chem. Soc. 2015, 137, 7592.  doi: 10.1021/jacs.5b03820

    26. [26]

      Berraud-Pache, R.; Lindh, R.; Navizet, I. J. Phys. Chem. B 2018, 122, 5173.  doi: 10.1021/acs.jpcb.8b00642

    27. [27]

      Hirano, T.; Hasumi, Y.; Ohtsuka, K.; Maki, S.; Niwa, H.; Yamaji, M.; Hashizume, D. J. Am. Chem. Soc. 2009, 131, 2385.  doi: 10.1021/ja808836b

    28. [28]

      Shimomura, O. In Bioluminescence:Chemical Principles and Methods, World Scientific Publishing Co. Pte. Ltd., Singapore, 2006.
       

    29. [29]

      Ding, B. W.; Liu, Y. J. J. Am. Chem. Soc. 2017, 139, 1106.  doi: 10.1021/jacs.6b09119

    30. [30]

      Luo, Y.; Liu, Y.-J. J. Phys. Chem. A 2019, 123, 4354.  doi: 10.1021/acs.jpca.9b02084

    31. [31]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215.
       

    32. [32]

      Perdew, J. P.; Ruzsinszky, A.; Tao, J. M.; Staroverov, V. N.; Scuseria, G. E.; Csonka, G. I. J. Chem. Phys. 2005, 123, A1133.
       

    33. [33]

      Dreuw, A.; Head-Gordon, M. Chem. Rev. 2005, 105, 4009.  doi: 10.1021/cr0505627

    34. [34]

      Boggio-Pasqua, M.; Heully, J.-L. Theor. Chem. Acc. 2015, 135, 9.
       

    35. [35]

      Ess, D. H.; Cook, T. C. J. Phys. Chem. A 2012, 116, 4922.  doi: 10.1021/jp300633j

    36. [36]

      Gilson, M. K.; Honig, B. H. Biopolymers 1986, 25, 2097.  doi: 10.1002/bip.360251106

    37. [37]

      Pitera, J. W.; Falta, M.; van Gunsteren, W. F. Biophys. J. 2001, 80, 2546.  doi: 10.1016/S0006-3495(01)76226-1

    38. [38]

      Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.  doi: 10.1002/jcc.10189

    39. [39]

      Nakatani, N.; Hasegawa, J.-y.; Nakatsuji, H. J. Am. Chem. Soc. 2007, 129, 8756.  doi: 10.1021/ja0611691

    40. [40]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. Gaussian Inc., Wallingford, 2009.
       

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    16. [16]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    17. [17]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(28)
  • Abstract views(3154)
  • HTML views(598)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return