Citation: Du Chongyang, Chen Yaofeng. ZnEt2 Promoted Hydrosilylation of CO2 and Formylation or Urealation of Amines with CO2 as a C1 Building Block[J]. Acta Chimica Sinica, ;2020, 78(9): 938-944. doi: 10.6023/A20060268 shu

ZnEt2 Promoted Hydrosilylation of CO2 and Formylation or Urealation of Amines with CO2 as a C1 Building Block

  • Corresponding author: Chen Yaofeng, yaofchen@mail.sioc.ac.cn
  • Received Date: 24 June 2020
    Available Online: 7 August 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21821002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000)the National Natural Science Foundation of China 21821002the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000

Figures(1)

  • Fixation and transformation of CO2 are of the great importance, especially the conversion of CO2 into valuable organic compounds catalyzed by the cheap and biocompatible metal catalysts. Zinc is an abundant, biocompatible and environmentally friendly element. ZnEt2 is commercial available, and has been widely used as reducing or transmetalation agent in hydrocarboxylation of unsaturated hydrocarbons with CO2. In these reactions, ZnEt2 is generally used in stoichiometric amount or excess amout. This manuscript reports the hydrosilylation of CO2 into methoxysilane promoted by a catalytic amount of ZnEt2 (1.0 mol%), the ZnEt2 promoted formylation or urealation of amines with CO2 as a one-carbon (C1) building block is also described. The hydrosilylation of CO2 into methoxysilane (CH3OSi(OEt)3) with (EtO)3SiH as a hydrosilylation reagent is affected by CO2 pressure, ZnEt2 amount, reaction temperature and reaction time. Under the reaction conditions of 1.0 MPa CO2 (the initial CO2 pressure) and 1.0 mol% ZnEt2, the yield of methoxysilane is up to ca. 90% after 7 h at 90℃, and no solvent is used for this reaction. In the presence of organic amine, the reaction gives formamide or urea instead of methoxysilane. Under 1.5 MPa CO2, 1.0 mol% ZnEt2, 2.4 equiv. (EtO)3SiH and 100℃, a series of secondary amines, both the aromatic ones and the aliphatic ones, can be formylated into formamides. In the formylation of N-methylanilines with different substituents at para-position, the isolated yields of the formylation products are in the order of OMe≈Me>H>F>Cl≈Br>CF3>NO2, indicating the electron-donating group at the para-position of the N-methylanilines is benefit for the formylation reaction. When primary amines are used as the substrates, the reactions prefer to produce urea derivatives under the same reaction conditions. In the urealation reaction, the electronic effect is not as significant as that in the formylation reaction.
  • 加载中
    1. [1]

    2. [2]

      Fernández-Alvarez, F. J.; Aitani, A. M.; Oro, L. Catal. Sci. Technol. 2014, 4, 611.  doi: 10.1039/C3CY00948C

    3. [3]

      (a) Koinuma, H.; Kawakami, F.; Kato, H.; Hirai, H. J. Chem. Soc., Chem. Commun. 1981, 213.(b) Süss-Fink, G.; Reiner, J. Organomet. Chem. 1981, 221, C36.(c) Jansen, A.; Grls, H.; Pitter, S. Organometallics 2000, 19, 135.(d) Jansen, A.; Pitter, S. J. Mol. Catal. A:Chem. 2004, 217, 41.(e) Deglmann, P.; Ember, E.; Hofmann, P.; Pitter, S.; Walter, O. Chem.-Eur. J. 2007, 13, 2864.(f) Metsnen, T. T.; Oestreich, M. Organometallics 2015, 34, 543.

    4. [4]

      (a) Eisenschmid, T. C.; Eisenberg, R. Organometallics 1989, 8, 1822.(b) Park, S.; Bézier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404.(c) Lalrempuia, R.; Iglesias, M.; Polo, V.; Sanz Miguel, P. J.; Fernández-Alvarez, F. J.; Pérez-Torrente, J. J.; Oro, L. A. Angew. Chem., Int. Ed. 2012, 51, 12824.

    5. [5]

      (a) Huckaba, A. J.; Hollis, T. K.; Reilly, S. W. Organometallics 2013, 32, 6248.(b) Itagaki, S.; Yamaguchi, K.;Mizuno, N. J. Mol. Catal. A:Chem. 2013, 366, 347.

    6. [6]

      Scheuermann, M. L.; Semproni, S. P.; Pappas, I.; Chirik, P. J. Inorg. Chem. 2014, 53, 9463.  doi: 10.1021/ic501901n

    7. [7]

      (a) González-Sebastiaán, L.; Flores-Alamo, M.; García, J. J. Organometallics 2013, 32, 7186.(b) Ríos, P.; Curado, N.; López-Serrano, J.; Rodríguez, A. Chem. Commun. 2016, 52, 2114.(c) Singh, V.; Sakaki, S.; Deshmukh, M. M. Organometallics 2018, 37, 1258.

    8. [8]

      (a) Motokura, K.; Kashiwame, D.; Miyaji, A.; Baba, T. Org. Lett. 2012, 14, 2642.(b) Motokura, K.; Kashiwame, D.; Takahashi, N.; Miyaji, A.; Baba, T. Chem.-Eur. J. 2013, 19, 10030.(c) Zhang, L.; Cheng, J.; Hou, Z. Chem. Commun. 2013, 49, 4782.(d) Gui, Y. Y.; Hu, N. F.; Chen, X. W.; Liao, L. L.; Ju, T.; Ye, J. H.; Zhang, Z.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2017, 139, 17011.

    9. [9]

      (a) Mitton, S. J.; Turculet, L. Chem.-Eur. J. 2012, 18, 15258.(b) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 6074.

    10. [10]

      LeBlanc, F. A.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. 2014, 53, 789.  doi: 10.1002/anie.201309094

    11. [11]

      Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2006, 128, 12362.  doi: 10.1021/ja0647250

    12. [12]

      Bertini, F.; Glatz, M.; Stöger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.; Gonsalvi, L. ACS Catal. 2019, 9, 632.  doi: 10.1021/acscatal.8b04106

    13. [13]

      (a) Rauch, M.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 18162.(b) Rauch, M.; Strater, Z.; Parkin, G. J. Am. Chem. Soc. 2019, 141, 17754.

    14. [14]

      (a) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. 2009, 48, 3322.(b) Wehmschulte, R. J.; Saleh, M.; Powell, D. R. Organometallics 2013, 32, 6812.(c) Courtemanche, M. A.; Légaré, M. A.; Rochette, É.; Fontaine, F. G. Chem. Commun. 2015, 51, 6858.(d) Chen, J.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X. J. Am. Chem. Soc. 2016, 138, 5321.

    15. [15]

      (a) Berkefeld, A.; Piers, W. E.; Parvez, M. J. Am. Chem. Soc. 2010, 132, 10660.(b) Jiang, Y.; Blacque, O.; Fox, T.; Berke, H. J. Am. Chem. Soc. 2013, 135, 7751.

    16. [16]

      (a) Weissermel, K.; Arpe, H. J. Industrial Organic Chemistry, 3rd ed., Wiley-VCH, Weinheim, Germany, 1997(translated by Lindley, C. R.).(b) Peter, G. M. Wuts. Greene's Protective Groups in Organic Synthesis, 5th ed., Wiley-VCH, Weinheim, 2014.

    17. [17]

      (a) Motokura, K.; Takahashi, N.; Kashiwame, D.; Yamaguchi, S.; Miyaji, A.; Baba, T. Catal. Sci. Technol. 2013, 3, 2392.(b) Santoro, O.; Lazreg, F.; Minenkov, Y.; Cavallo, L.; Cazin, C. S. J. Dalton Trans. 2015, 44, 18138.(c) Zhang, S.; Mei, Q. Q.; Liu, H. Y.; Liu, H. Z.; Zhang, Z. P.; Han, B. X. RSC Adv., 2016, 6, 32370.(d) Li, R. P.; Zhao, Y. F.; Li, Z. Y.; Wu, Y. Y.; Wang, J. J.; Liu, Z. M. Sci China Chem. 2019, 62, 256.

    18. [18]

      (a) Molla, R. A.; Bhanja, P.; Ghosh, K.; Islam, S. S.; Bhaumik, A.; Islam, S. M. ChemCatChem 2017, 9, 1939.(b) Cui, X. J.; Zhang, Y.; Deng, Y. Q,; Shi, F. Chem. Commun. 2014, 50, 13521.(c) Luo, X. Y.; Zhang, H. Y.; Ke, Z. G.; Wu, C. L.; Guo, S. E.; Wu, Y. Y.; Yu, B.; Liu, Z. M. Sci. China Chem. 2018, 61, 725.

    19. [19]

      (a) Kröcher, O.; Köppel, R. A.; Baiker, A. Chem. Commun. 1997, 453.(b) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1994, 116, 8851.(c) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 344.(d) Schmid, L.; Canonica, A.; Baiker, A. Appl. Catal. A 2003, 255, 23.(e) Munshi, P.; Heldebrant, D. J.; McKoon, E. P.; Kelly, P. A.; Tai, C. C.; Jessop, P. G. Tetrahedron Lett. 2003, 44, 2725.(f) Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. L. Angew. Chem. Int. Ed. 2015, 54, 6186.(g) Zhang, F. H.; Liu, C.; Li, W.; Tian, G. L.; Xie, J. H.; Zhou, Q. L. Chin. J. Chem. 2018, 36, 1000.

    20. [20]

      (a) Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 9777.(b) Frogneux, X.; Jacquet O.; Cantat, T. Catal. Sci. Technol. 2014, 4, 1529.(c) Jayarathne, U.; Hazariand, N.; Bernskoetter, W. H. ACS Catal. 2018, 8, 1338.

    21. [21]

      (a) Daw, P.; Chakraborty, S.; Leitus, G.; Diskin-Posner, Y.; BenDavid, Y.; Milstein, D. ACS Catal. 2017, 7, 2500.(b) Ke, Z. G.; Yang, Z. Z.; Liu, Z. H.; Yu, B.; Zhao, Y. F.; Guo, S. E.; Wu, Y. Y.; Liu, Z. M. Org. Lett. 2018, 20, 6622.

    22. [22]

      (a) Itagaki, S.; Yamaguchi, K.; Mizuno, N. J. Mol. Catal. A:Chem. 2013, 366, 347.(b) Nguyen, T. V. Q.; Yoo, W. J.; Kobayashi, S. Angew. Chem. Int. Ed. 2015, 54, 9209.(c) Lam, R. H.; McQueen, C. M. A.; Pernik, I.; McBurney, R. T.; Hill, A. F.; Messerle, B. A. Green Chem. 2019, 21, 538.

    23. [23]

      González-Sebastián, L.; Flores-Alamo, M.; García, M. Organometallics 2015, 34, 763.  doi: 10.1021/om501176u

    24. [24]

      (a) Mitsudome, T.; Urayama, T.; Fujita, S.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. ChemCatChem 2017, 9, 3632.(b) Tang, G.; Bao, H. L.; Jin, C.; Zhong, X. H.; Du, X. L. RSC Adv. 2015, 5, 99678.

    25. [25]

      (a) Fang, C.; Lu, C. L.; Liu, M. H.; Zhu, Y. L.; Fu, Y.; Lin, B. L. ACS Catal. 2016, 6, 7876.(b) Nale, D. B.; Bhanage, B. M. Synlett 2016, 27, 1413.

    26. [26]

      (a) Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934.(b) Das, S.; Bobbink, F. D.; Bulut, S.; Soudani, M.; Dyson, P. J. Chem. Commun. 2016, 52, 2497.(c) Hao, L. D.; Zhao, Y. F.; Yu, B.; Yang, Z. Z.; Zhang, H. Y.; Han, B. X.; Gao, X.; Liu, Z. M. ACS Catal. 2015, 5, 4989.(d) Zhao, W. F.; Chi, X. P.; Li, H.; He, J.; Long, J. X.; Xu, Y. F.; Yang, S. Green Chem. 2019, 21, 567.(e) Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Angew. Chem, Int. Ed. 2017, 56, 7425.(f) Lv, H.; Xing, Q.; Yue, C. T.; Lei Z. Q.; Li, F. W. Chem. Commun. 2016, 52, 6545.(g) Zhao, T. X.; Zhai, G. W.; Liang, J.; Li, P.; Hu X. B.; Wu, Y. T. Chem. Commun. 2017, 53, 8046.(h) Gomes, C. D. N.; Jacquet, O.; Villiers, C.; Thuéry, P.; Ephritikhine, M.; Cantat, T. Angew. Chem. Int. Ed. 2012, 51, 187.(i) Liu, X. F.; Li, X. Y.; Qiao, C.; He, L. N. Synlett 2018, 29, 548.(j) Wang, M. Y.; Wang, N.; Liu, X. F.; Qiao, C.; He, L. N. Green Chem. 2018, 20, 1564.(k) Liu, X. F.; Ma, R.; Qiao, C.; Cao H.; He, L. N. Chem. Eur. J. 2016, 22, 16489.(l) Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Angew. Chem. Int. Ed. 2017, 56, 7425.

    27. [27]

      Shi, F.; Zhang, Q. H.; Ma, Y. B.; He, Y.; Deng, Y. Q. J. Am. Chem. Soc. 2005, 127, 4182.  doi: 10.1021/ja042207o

    28. [28]

      (a) Shi, F.; Deng, Y. Q.; SiMa, T. L.; Peng, J. J.; Gu, Y. L.; Qiao, B. T. Angew. Chem. Int. Ed. 2003, 42, 3257.(b) Ion, A.; Parvulescu, V.; Jacobs, P.; Vos, D. D. Green Chem. 2007, 9, 158.

    29. [29]

      Tamura, M.; Ito, K.; Nakagawa, Y.; Tomishige, K. J. Catal. 2016, 343, 75.  doi: 10.1016/j.jcat.2015.11.015

    30. [30]

      Jurado-Vazquez, T.; García, J. J. Catal. Lett. 2018, 148, 1162.  doi: 10.1007/s10562-018-2305-8

    31. [31]

      Xu, M. T.; Jupp, A. R.; Stephan, D. W. Angew. Chem. Int. Ed. 2017, 56, 14277.  doi: 10.1002/anie.201708921

    32. [32]

      Ogura, H.; Takeda, K.; Tokue, R.; Kobayashi, T. Synthesis 1978, 394.
       

    33. [33]

      Cooper, C. F.; Falcone, S. J. Synth. Commun. 1995, 25, 2467.  doi: 10.1080/00397919508015452

    34. [34]

      Yamazaki, N.; Higashi, F.; Iguchi, T. Tetrahedron Lett. 1974, 13, 1191.
       

    35. [35]

      Enthaler, S.; Wu, X. F. Zinc Catalysis:Applications in Organic Synthesis, Wiley-VCH, Weinheim, 2015.
       

    36. [36]

      (a) Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2002, 124, 10008.(b) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956.(c) Shimizu, K.; Sato, Y.; Mori, M.; Takimoto, M. Org. Lett. 2005, 7, 195.(d) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936.(e) Li, S.; Yuan, W.; Ma, S. M. Angew. Chem., Int. Ed. 2011, 50, 2578.(f) Yuan, R.; Lin, Z. Organometallics 2014, 33, 7147.

    37. [37]

      (a) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1998, 120, 11018.(b) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738.(c) Xiao, Y. L.; Wang, Z.; Ding, K. L. Chem. Eur. J. 2005, 11, 3668.(d) Reiter, M.; Vagin, S.; Kronast, A.; Jandl, C.; Rieger, B. Chem. Sci. 2017, 8, 1876.

    38. [38]

      (a) Sattler, W.; Parkin, G. J. Am. Chem. Soc. 2012, 134, 17462.(b) Khandelwal, M.; Wehmschulte, R. J. Angew. Chem., Int. Ed. 2012, 51, 7323.(c) Rit, A.; Zanardi, A.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2014, 53, 13273.(d) Specklin, D.; Fliedel, C.; Gourlaouen, C.; Bruyere, J. C.; Avilés, T.; Boudon, C.; Ruhlmann, L.; Dagorne, S. Chem.-Eur. J. 2017, 23, 5509.(e) Specklin, D.; Hild, F.; Fliedel, C.; Gourlaouen, C.; Veiros, L. F.; Dagorne, S. Chem.-Eur. J. 2017, 23, 15908.(f) Tüchler, M.; Grtner, L.; Fischer, S.; Boese, A. D.; Belaj, F.; Msch-Zanetti, N. C. Angew. Chem. Int. Ed. 2018, 57, 6906.

    39. [39]

      Jacquet, O.; Frogneux, X.; Das Neves Gomes, C.; Cantat, T. Chem. Sci. 2013, 4, 2127.  doi: 10.1039/c3sc22240c

    40. [40]

      Luo, R. C.; Lin, X. W.; Chen, Y. J.; Zhang, W. Y.; Zhou, X. T.; Ji, H. B. ChemSusChem 2017, 10, 1224.  doi: 10.1002/cssc.201601490

    41. [41]

      Feng, G. Q.; Du, C. Y.; Xiang, L.; Rosal, I. D.; Li, G. Y.; Leng, X. B.; Chen, E. Y.-X.; Maron, L.; Chen, Y. F. ACS Catal. 2018, 8, 4710.  doi: 10.1021/acscatal.8b01033

    42. [42]

      Du, C. Y.; Chen, Y. F. Chin. J. Chem. 2020, 38, 1057.  doi: 10.1002/cjoc.202000072

    43. [43]

      George, H. W. US 2530367, 1950[Chem. Abstr. 1950, 66, 790230].
       

    44. [44]

      Dobrovetsky, R.; Stephan, D. W. Isr. J. Chem. 2015, 55, 206.  doi: 10.1002/ijch.201400121

    45. [45]

      Heyn, H. H. Advances in Inorganic Chemistry, Vol. 66, Eds.:Jacobs, I.; Carr, R. H., Elsevier, 2014, Chapter three, pp. 83~115.

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(6)
  • Abstract views(2565)
  • HTML views(233)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return