Citation: Sun Jiulong, Cao Wanwan, Wang Ning, Gu Lin, Li Weihua. Progress of Boron Nitride Nanosheets Used for Heavy-duty Anti-Corrosive Coatings[J]. Acta Chimica Sinica, ;2020, 78(11): 1139-1149. doi: 10.6023/A20060267 shu

Progress of Boron Nitride Nanosheets Used for Heavy-duty Anti-Corrosive Coatings

  • Corresponding author: Gu Lin, gulin5@mail.sysu.edu.cn Li Weihua, liweihua3@mail.sysu.edu.cn
  • Received Date: 24 June 2020
    Available Online: 27 July 2020

    Fund Project: the Fundamental Research Funds for the Central Universities, Sun Yat-sen University 20lgzd17Project supported by the National Natural Science Foundation of China (No. 51973231), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 20lgzd17)the National Natural Science Foundation of China 51973231

Figures(13)

  • Boron nitride nanosheets (BNNSs), also known as "white graphene", is an important nanofiller with excellent mechanical properties, thermal conductivity, abrasion resistance, barrier properties, and hydrophobicity. It is also a new type of excellent performance insulation materials. It is widely used in heavy-duty anti-corrosion coatings, lubricants, sensors and other fields. Based on the huge application prospects of BNNSs in the field of metal corrosion protection, this article systematically summarizes the preparation and surface functionalization of BNNSs, boron nitride thin film protective coatings, BNNSs/organic protective coatings, BNNSs-inorganic materials/organic protective coatings, and focuses on the detailed analysis and existing problems of BNNSs uniformly dispersed in organic coatings and used for metal corrosion protection. The future development of BNNSs-based anticorrosive coatings is prospected.
  • 加载中
    1. [1]

      Barati, N.; Meletis, E. I. Mater. Today Commun. 2019, 19, 1.  doi: 10.1016/j.mtcomm.2018.12.001

    2. [2]

      Richards, C. A. J.; McMurray, H. N.; Williams, G. Corros. Sci. 2019, 154, 101.  doi: 10.1016/j.corsci.2019.04.005

    3. [3]

      Samiee, R.; Ramezanzadeh, B.; Mahdavian, M.; Alibakhshi, E. J. Clean Prod. 2019, 220, 340.  doi: 10.1016/j.jclepro.2019.02.149

    4. [4]

      Ding, R.; Chen, S.; Lv, J.; Gui, T.-J.; Wang, X, ; Zhao, X.-D.; Liu, J.; Li, B.-J.; Song, L.-Y.; Li, W.-H. Acta Chim. Sinica 2019, 77, 1140(in Chinese).
       

    5. [5]

      Wang, H.-X.; Yang, G.; Cheng, T.-S.; Wang, N.; Sun, R.; Wang, Z.-P. Acta Chim. Sinica 2019, 77, 316(in Chinese).
       

    6. [6]

      Sugino, T.; Kawasaki, A. S.; Tanioka, K.; Shirafuji, J. Appl. Phys. Lett. 1997, 71, 2704.  doi: 10.1063/1.120183

    7. [7]

      Cui, M. J.; Ren, S. M.; Chen, J.; Liu, S.; Zhang, G. G.; Zhao, H. C.; Wang, L. P.; Xue, Q. J. Appl. Surf. Sci. 2017, 397, 77.  doi: 10.1016/j.apsusc.2016.11.141

    8. [8]

      Zhao, H. R.; Ding, J. H.; Yu, H. B. New. J. Chem. 2018, 42, 14433.  doi: 10.1039/C8NJ03113D

    9. [9]

      Zhang, D. D.; Zhao, D. L.; Yao, R. R.; Xie, W. G. RSC Adv. 2015, 5, 28098.  doi: 10.1039/C5RA00312A

    10. [10]

      Weng, Q. H.; Wang, X. B.; Wang, X.; Bando, Y.; Golberg, D. Chem. Soc. Rev. 2016, 45, 3989.  doi: 10.1039/C5CS00869G

    11. [11]

      Cui, M. J.; Ren, S. M.; Qin, S.; Xue, Q. J.; Zhao, H. R.; Wang, L. P. RSC Adv. 2017, 7, 44043.  doi: 10.1039/C7RA06835B

    12. [12]

      Zhi, C. Y.; Bando, Y.; Tang, C. C.; Golberg, D. Mater. Sci. Eng. R-Rep. 2010, 70, 92.  doi: 10.1016/j.mser.2010.06.004

    13. [13]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  doi: 10.1126/science.1102896

    14. [14]

      Rao, C. N. R.; Nag, A. J. Inorg. Chem. 2010, 27, 4244.

    15. [15]

      Yu, C. P.; Zhang, J.; Tian, W.; Fan, X. D.; Yao, Y. G. RSC Adv. 2018, 8, 21948.  doi: 10.1039/C8RA02685H

    16. [16]

      Wang, J. G.; Ma, F. C.; Liang, W. J.; Sun, M. T. Mater. Today Phys. 2017, 2, 6.  doi: 10.1016/j.mtphys.2017.07.001

    17. [17]

      Chen, X. J.; Dobson, J. F.; Raston, C. L. Chem. Commun. 2012, 48, 3703.  doi: 10.1039/c2cc17611d

    18. [18]

      Lei, W. W.; Mochalin, V. N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Nat. Commun. 2015, 6, 8849.  doi: 10.1038/ncomms9849

    19. [19]

      Ding, J. H.; Zhao, H. R.; Yu, H. B. 2D Mater. 2018, 5, 045015.  doi: 10.1088/2053-1583/aad51a

    20. [20]

      Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Science 2013, 304, 1420.

    21. [21]

      Zhi, C.; Bando, Y.; Tang, C.; Kuwahara, H.; Golberg, D. Adv. Mater. 2009, 21, 2889.  doi: 10.1002/adma.200900323

    22. [22]

      Cao, L.; Emami, S.; Lafdi, K. Mater. Express 2014, 4, 165.  doi: 10.1166/mex.2014.1155

    23. [23]

      Wang, Y.; Shi, Z. X.; Yin, J. J. Mater. Chem. 2011, 21, 11371.  doi: 10.1039/c1jm10342c

    24. [24]

      Zhou, K. G.; Mao, N. N.; Wang, H. X.; Peng, Y.; Zhang, H. L. Angew. Chem. Int. Ed. 2011, 50, 10839.  doi: 10.1002/anie.201105364

    25. [25]

      Wang, N.; Yang, G.; Wang, H. X.; Yan, C. Z.; Sun, R.; Wong, C. P. Mater. Today 2019, 27, 33.  doi: 10.1016/j.mattod.2018.10.039

    26. [26]

      Zhao, H. R.; Ding, J. H.; Shao, Z. Z.; Xu, B. Y.; Zhou, Q. B.; Yu, H. B. ACS Appl. Mater. Interfaces 2019, 11, 37247.  doi: 10.1021/acsami.9b11180

    27. [27]

      Yan, H. L.; Yu, P.; Han, G. C.; Zhang, Q. H.; Gu, L.; Yi, Y. P.; Liu, H. B.; Li, Y. L.; Mao, L. Q. Angew. Chem. Int. Ed. 2019, 58, 746.  doi: 10.1002/anie.201809730

    28. [28]

      Guler, O.; Guler, S, H. Optik 2016, 127, 4630.  doi: 10.1016/j.ijleo.2016.02.033

    29. [29]

      Zhou, X. S.; Wu, T. B.; Ding, K. L; Hu, B. J.; Hou, M. Q.; Han, B. X. Chem. Commun. 2010, 46, 386.  doi: 10.1039/B914763B

    30. [30]

      Gunasekaran, S. G.; Dharmendirakumar, M. High Perform. Polym. 2014, 26, 274.  doi: 10.1177/0954008313511349

    31. [31]

      Morishita, T.; Okamoto, H.; Katagiri, Y.; Matsushita, M.; Fukumori, K. Chem. Commun. 2015, 51, 12068.  doi: 10.1039/C5CC04077A

    32. [32]

      Ding, J. H.; Zhao, H. C.; Wang, Q. L.; Peng, W. J.; Yu, H. B. Nanotechnology 2017, 28, 475602.  doi: 10.1088/1361-6528/aa8e3d

    33. [33]

      Lee, Y. H.; Liu, K. K.; Lu, A. Y.; Wu, C. Y.; Lin, C. T.; Zhang, W. J.; Su, C. Y.; Hsu, C. L.; Lin, T. H. RSC Adv. 2012, 2, 111.  doi: 10.1039/C1RA00703C

    34. [34]

      Lu, G. Y.; Wu, T. R.; Yuan, Q. H.; Wang, H. S.; Wang, H. M.; Ding, F. F.; Xie, X. M.; Jiang, M. H. Nat. Commun. 2015, 6, 6160.  doi: 10.1038/ncomms7160

    35. [35]

      Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; Ajayan, P. M. Nano Lett. 2010, 10, 3209.  doi: 10.1021/nl1022139

    36. [36]

      Tay, R. Y.; Griep, M. H.; Mallick, G.; Tsang, S. H.; Singh, R. S.; Tumlin, T.; Teo, E. H. T.; Karna, S. P. Nano Lett. 2014, 14, 839.  doi: 10.1021/nl404207f

    37. [37]

      Pakdel, A.; Zhi, C. Y.; Bando, Y.; Nakayama, T.; Golberg, D. ACS Nano 2011, 5, 6507.  doi: 10.1021/nn201838w

    38. [38]

      Lin, Y.; Williams, T. V.; Xu, T. B.; Cao, W.; Elsayed-Ali, H. E.; Connell, J. W. J. Phys. Chem. C 2011, 115, 2679.

    39. [39]

      Yu, B.; Xing, W. Y.; Guo, W. W.; Qiu, S. L.; Wang, X.; Lo, S. M.; Hu, Y. J. Mater. Chem. A 2016, 4, 7330.  doi: 10.1039/C6TA01565D

    40. [40]

      Sainsbury, T.; Satti, A.; May, P.; Wang, Z. M.; McGovern, I.; Gunko, Y. K.; Coleman, J. J. Am. Chem. Soc. 2012, 134, 18758.  doi: 10.1021/ja3080665

    41. [41]

      Cai, W.; Hong, N. N.; Feng, X. M.; Zeng, W. R.; Shi, Y. Q.; Zhang, Y.; Wang, B. B.; Hu, Y. Chem. Eng. J. 2017, 330, 309.  doi: 10.1016/j.cej.2017.07.162

    42. [42]

      Wu, Y. Q.; He, Y.; Zhou, T. G.; Chen, C. L.; Zhong, F.; Xia, Y. Q.; Xie, P.; Zhang, C. Prog. Org. Coat. 2020, 142, 105541.  doi: 10.1016/j.porgcoat.2020.105541

    43. [43]

      Wu, Y. Q.; He, Y.; Chen, C. L.; Zhong, F.; Li, H. J.; Chen, J. Y.; Zhou, T. G. Colloid Surf. A-Physicochem. Eng. Asp. 2020, 587, 124337.  doi: 10.1016/j.colsurfa.2019.124337

    44. [44]

      Li, J.; Cui, J. C.; Yang, J. Y.; Ma, Y.; Qiu, H. X.; Yang, J. H. Prog. Org. Coat. 2016, 99, 443.  doi: 10.1016/j.porgcoat.2016.07.008

    45. [45]

      Pourhashem, S.; Vaezi, M. R.; Rashidi, A.; Bagherzadeh, M. R. Prog. Org. Coat. 2017, 111, 47.  doi: 10.1016/j.porgcoat.2017.05.008

    46. [46]

      Raza, M. A.; Rehman, Z. U.; Ghauri, F. A. Thin Solid Films 2018, 663, 93.  doi: 10.1016/j.tsf.2018.07.046

    47. [47]

      Fan, Y. Z.; Yang, H. Z.; Fan, H. S.; Liu, Q.; Lv, C.; Zhao, X.; Yang, M. X.; Wu, J. J.; Cao, X. M. Materials 2020, 13, 2340.  doi: 10.3390/ma13102340

    48. [48]

      Liu, Z.; Li, J. H.; Liu, X. H. ACS Appl. Mater. Interfaces 2020, 12, 6503.  doi: 10.1021/acsami.9b21467

    49. [49]

      Gu, L.; Ding, J.-H.; Yu, H.-B. Prog. Chem. 2016, 28, 737(in Chinese).

    50. [50]

      Cui, G.; Bi, Z. X.; Zhang, R. Y.; Liu, J. G.; Yu, X.; Li, Z. L. Chem. Eng. J. 2019, 373, 104.  doi: 10.1016/j.cej.2019.05.034

    51. [51]

      Gyawali, G.; Adhikari, R.; Kim, H. S.; Cho, H. B.; Lee, S. W. ECS Electrochem. Lett. 2013, 2, C7.

    52. [52]

      Britun, V. F.; Kurdyumov, A. V.; Petrusha, I. A. Mater. Lett. 1999, 41, 83.  doi: 10.1016/S0167-577X(99)00108-1

    53. [53]

      Liu, Z.; Gong, Y. J.; Zhou, W.; Ma, L. L.; Yu, J. J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J.; Ajayan, P. M. Nat. Commun. 2013, 4, 1.

    54. [54]

      Yi, M.; Shen, Z. G.; Zhao, X. H.; Liang, S. S.; Liu, L. Appl. Phys. Lett. 2014, 104, 143101.  doi: 10.1063/1.4870530

    55. [55]

      Liu, K.; Zhang, G. G.; Pu, J. B.; Ma, F.; Wu, G. Z.; Lu, Z. H. Ceram. Int. 2018, 44, 13888.  doi: 10.1016/j.ceramint.2018.04.236

    56. [56]

      Zhang, J.; Yang, Y. C.; Lou, J. Nanotechnology 2016, 27, 364004.  doi: 10.1088/0957-4484/27/36/364004

    57. [57]

      Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M. Sci Rep 2017, 7, 42139.  doi: 10.1038/srep42139

    58. [58]

      Miller, R. J.; Adeleye, A. S.; Page, H. M.; Kui, L.; Lenihan, H. S.; Keller, A. A. J. Nanopart. Res. 2020, 22, 129.  doi: 10.1007/s11051-020-04875-x

    59. [59]

      Parra, C.; Montero-Silva, F.; Henríquez, R.; Flores, M.; Garín, C.; Ramírez, C.; Moreno, M.; Correa, J.; Seeger, M.; Haberle, P. ACS Appl. Mater. Interfaces 2015, 7, 6430.  doi: 10.1021/acsami.5b01248

    60. [60]

      Chilkoor, G.; Karanam, S. P.; Star, S.; Shrestha, N.; Sani, R. K.; Upadhyayula, V. K. K.; Ghoshal, D.; Koratkar, N. A.; Meyyappan, M.; Gadhamshetty, V. ACS Nano 2018, 12, 2242.  doi: 10.1021/acsnano.7b06211

    61. [61]

      Shen, L. T.; Zhao, Y. D.; Wang, Y.; Song, R. B.; Yao, Q.; Chen, S. S.; Chai, Y. J. Mater. Chem. A 2016, 4, 5044.  doi: 10.1039/C6TA01604A

    62. [62]

      Li, L. H.; Xing, T.; Chen, Y.; Jones, R. Adv. Mater. Interfaces 2014, 1, 1300132.  doi: 10.1002/admi.201300132

    63. [63]

      Percival, S. J.; Melia, M. A.; Alexander, C. L.; Nelson, D. W.; Schindelholz, E. J.; Spoerke, E. D. Surf. Coat. Int. 2020, 383, 125228.  doi: 10.1016/j.surfcoat.2019.125228

    64. [64]

      Zhang, X. F.; Chen, Y. Q.; Hu, J. M. Corros. Sci. 2020, 166, 108452.  doi: 10.1016/j.corsci.2020.108452

    65. [65]

      Sharifalhoseini, Z.; Entezari, M. H.; Davoodi, A.; Shahidi, M. J. Ind. Eng. Chem. 2020, 83, 333.  doi: 10.1016/j.jiec.2019.12.006

    66. [66]

      Ghomi, E. R.; Khorasani, S. N.; Kichi, M. K.; Dinari, M.; Ataei, S.; Enayati, M. H.; Koochaki, M. S.; Neisiany, R. E. Colloid. Polym. Sci. 2020, 298, 213.  doi: 10.1007/s00396-019-04597-0

    67. [67]

      Husain, E.; Narayanan, T. N.; Taha-Tijerina, J. J.; Vinod, S.; Vajtai, R.; Ajayan, P. M. ACS Appl. Mater. Interfaces 2013, 5, 4129.  doi: 10.1021/am400016y

    68. [68]

      Yi, M.; Shen, Z. G.; Liu, L.; Liang, S. S. RSC Adv. 2015, 5, 2983.  doi: 10.1039/C4RA09156F

    69. [69]

      Simonov, K.; Vinogradov, N. A.; Ng, M. L.; Vinogradov, A.; Mårtensson, N.; Preobrajenski, A. B. Surf. Sci. 2012, 606, 564.  doi: 10.1016/j.susc.2011.11.031

    70. [70]

      Petravic, M.; Peter, R.; Kavre, I.; Li, L. H.; Chen, Y.; Fan, L. J.; Yang, Y. W. Phys. Chem. Chem. Phys. 2010, 12, 15349.  doi: 10.1039/c0cp00984a

    71. [71]

      Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. ACS Nano 2012, 6, 1102.  doi: 10.1021/nn203507y

    72. [72]

      Sun, W.; Wang, L. D.; Wu, T. T.; Pan, Y. Q.; Liu, G. C. Carbon 2014, 79, 605.  doi: 10.1016/j.carbon.2014.08.021

    73. [73]

      Camilli, L.; Yu, F.; Cassidy, A.; Hornekaer, L.; Boggild, P. 2D Mater. 2019, 6, 022002.  doi: 10.1088/2053-1583/ab04d4

    74. [74]

      Sun, W.; Wang, L. D.; Wu, T. T.; Pan, Y. Q.; Liu, G. C. J. Electrochem. Soc. 2016, 163, C16.  doi: 10.1149/2.0301602jes

    75. [75]

      Chen, J.; Chen, B.; Li, J. Y.; Tong, X.; Zhao, H. C.; Wang, L. P. Polym. Int. 2017, 66, 659.  doi: 10.1002/pi.5296

    76. [76]

      Pathan, S.; Ahmad, S. J. Mater. Chem. A 2013, 1, 14227.  doi: 10.1039/c3ta13126b

    77. [77]

      Gu, L.; Liu, S.; Zhao, H. C.; Yu, H. B. ACS Appl. Mater. Interfaces 2015, 7, 17641.  doi: 10.1021/acsami.5b05531

    78. [78]

      Zhao, H. C.; Ding, J. H.; Yu, H. B. ChemistrySelect 2018, 3, 11277.  doi: 10.1002/slct.201802079

    79. [79]

      Yu, J. J.; Zhao, W. J.; Liu, G.; Wu, Y. M.; Wang, D. L. Surf. Topogr.-Metrol. Prop. 2018, 6, 034019.  doi: 10.1088/2051-672X/aad5ab

    80. [80]

      Cui, M. J.; Ren, S. M.; Qin, S. L.; Xue, Q. J.; Zhao, H. C.; Wang, L. P. Corros. Sci. 2018, 131, 187.  doi: 10.1016/j.corsci.2017.11.022

    81. [81]

      Zou, B. J.; Chang, X. J.; Yang, J. X.; Wang, S. C.; Xu, J. L.; Wang, S. R.; Samukawa, S.; Wang, L. Prog. Org. Coat. 2019, 133, 139.  doi: 10.1016/j.porgcoat.2019.04.040

    82. [82]

      Huang, H. W.; Huang, X. F.; Xie, Y. H.; Tian, Y. Q.; Jiang, X.; Zhang, X. Y.; Prog. Org. Coat. 2019, 130, 124.  doi: 10.1016/j.porgcoat.2019.01.059

    83. [83]

      Zhang, C. L.; He, Y.; Li, F.; Di, H. H.; Zhang, L.; Zhan, Y. Q. J. Alloy. Compd. 2016, 685, 743.  doi: 10.1016/j.jallcom.2016.06.220

    84. [84]

      Li, X. Y.; Bandyopadhyay, P.; Kshetri, T.; Kim, N. H.; Lee, J. H. J. Mater. Chem. A 2018, 6, 21501.  doi: 10.1039/C8TA08351G

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(84)
  • Abstract views(3289)
  • HTML views(985)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return