Citation: Sun Jiulong, Cao Wanwan, Wang Ning, Gu Lin, Li Weihua. Progress of Boron Nitride Nanosheets Used for Heavy-duty Anti-Corrosive Coatings[J]. Acta Chimica Sinica, ;2020, 78(11): 1139-1149. doi: 10.6023/A20060267 shu

Progress of Boron Nitride Nanosheets Used for Heavy-duty Anti-Corrosive Coatings

  • Corresponding author: Gu Lin, gulin5@mail.sysu.edu.cn Li Weihua, liweihua3@mail.sysu.edu.cn
  • Received Date: 24 June 2020
    Available Online: 27 July 2020

    Fund Project: the Fundamental Research Funds for the Central Universities, Sun Yat-sen University 20lgzd17Project supported by the National Natural Science Foundation of China (No. 51973231), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 20lgzd17)the National Natural Science Foundation of China 51973231

Figures(13)

  • Boron nitride nanosheets (BNNSs), also known as "white graphene", is an important nanofiller with excellent mechanical properties, thermal conductivity, abrasion resistance, barrier properties, and hydrophobicity. It is also a new type of excellent performance insulation materials. It is widely used in heavy-duty anti-corrosion coatings, lubricants, sensors and other fields. Based on the huge application prospects of BNNSs in the field of metal corrosion protection, this article systematically summarizes the preparation and surface functionalization of BNNSs, boron nitride thin film protective coatings, BNNSs/organic protective coatings, BNNSs-inorganic materials/organic protective coatings, and focuses on the detailed analysis and existing problems of BNNSs uniformly dispersed in organic coatings and used for metal corrosion protection. The future development of BNNSs-based anticorrosive coatings is prospected.
  • 加载中
    1. [1]

      Barati, N.; Meletis, E. I. Mater. Today Commun. 2019, 19, 1.  doi: 10.1016/j.mtcomm.2018.12.001

    2. [2]

      Richards, C. A. J.; McMurray, H. N.; Williams, G. Corros. Sci. 2019, 154, 101.  doi: 10.1016/j.corsci.2019.04.005

    3. [3]

      Samiee, R.; Ramezanzadeh, B.; Mahdavian, M.; Alibakhshi, E. J. Clean Prod. 2019, 220, 340.  doi: 10.1016/j.jclepro.2019.02.149

    4. [4]

      Ding, R.; Chen, S.; Lv, J.; Gui, T.-J.; Wang, X, ; Zhao, X.-D.; Liu, J.; Li, B.-J.; Song, L.-Y.; Li, W.-H. Acta Chim. Sinica 2019, 77, 1140(in Chinese).
       

    5. [5]

      Wang, H.-X.; Yang, G.; Cheng, T.-S.; Wang, N.; Sun, R.; Wang, Z.-P. Acta Chim. Sinica 2019, 77, 316(in Chinese).
       

    6. [6]

      Sugino, T.; Kawasaki, A. S.; Tanioka, K.; Shirafuji, J. Appl. Phys. Lett. 1997, 71, 2704.  doi: 10.1063/1.120183

    7. [7]

      Cui, M. J.; Ren, S. M.; Chen, J.; Liu, S.; Zhang, G. G.; Zhao, H. C.; Wang, L. P.; Xue, Q. J. Appl. Surf. Sci. 2017, 397, 77.  doi: 10.1016/j.apsusc.2016.11.141

    8. [8]

      Zhao, H. R.; Ding, J. H.; Yu, H. B. New. J. Chem. 2018, 42, 14433.  doi: 10.1039/C8NJ03113D

    9. [9]

      Zhang, D. D.; Zhao, D. L.; Yao, R. R.; Xie, W. G. RSC Adv. 2015, 5, 28098.  doi: 10.1039/C5RA00312A

    10. [10]

      Weng, Q. H.; Wang, X. B.; Wang, X.; Bando, Y.; Golberg, D. Chem. Soc. Rev. 2016, 45, 3989.  doi: 10.1039/C5CS00869G

    11. [11]

      Cui, M. J.; Ren, S. M.; Qin, S.; Xue, Q. J.; Zhao, H. R.; Wang, L. P. RSC Adv. 2017, 7, 44043.  doi: 10.1039/C7RA06835B

    12. [12]

      Zhi, C. Y.; Bando, Y.; Tang, C. C.; Golberg, D. Mater. Sci. Eng. R-Rep. 2010, 70, 92.  doi: 10.1016/j.mser.2010.06.004

    13. [13]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  doi: 10.1126/science.1102896

    14. [14]

      Rao, C. N. R.; Nag, A. J. Inorg. Chem. 2010, 27, 4244.

    15. [15]

      Yu, C. P.; Zhang, J.; Tian, W.; Fan, X. D.; Yao, Y. G. RSC Adv. 2018, 8, 21948.  doi: 10.1039/C8RA02685H

    16. [16]

      Wang, J. G.; Ma, F. C.; Liang, W. J.; Sun, M. T. Mater. Today Phys. 2017, 2, 6.  doi: 10.1016/j.mtphys.2017.07.001

    17. [17]

      Chen, X. J.; Dobson, J. F.; Raston, C. L. Chem. Commun. 2012, 48, 3703.  doi: 10.1039/c2cc17611d

    18. [18]

      Lei, W. W.; Mochalin, V. N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Nat. Commun. 2015, 6, 8849.  doi: 10.1038/ncomms9849

    19. [19]

      Ding, J. H.; Zhao, H. R.; Yu, H. B. 2D Mater. 2018, 5, 045015.  doi: 10.1088/2053-1583/aad51a

    20. [20]

      Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Science 2013, 304, 1420.

    21. [21]

      Zhi, C.; Bando, Y.; Tang, C.; Kuwahara, H.; Golberg, D. Adv. Mater. 2009, 21, 2889.  doi: 10.1002/adma.200900323

    22. [22]

      Cao, L.; Emami, S.; Lafdi, K. Mater. Express 2014, 4, 165.  doi: 10.1166/mex.2014.1155

    23. [23]

      Wang, Y.; Shi, Z. X.; Yin, J. J. Mater. Chem. 2011, 21, 11371.  doi: 10.1039/c1jm10342c

    24. [24]

      Zhou, K. G.; Mao, N. N.; Wang, H. X.; Peng, Y.; Zhang, H. L. Angew. Chem. Int. Ed. 2011, 50, 10839.  doi: 10.1002/anie.201105364

    25. [25]

      Wang, N.; Yang, G.; Wang, H. X.; Yan, C. Z.; Sun, R.; Wong, C. P. Mater. Today 2019, 27, 33.  doi: 10.1016/j.mattod.2018.10.039

    26. [26]

      Zhao, H. R.; Ding, J. H.; Shao, Z. Z.; Xu, B. Y.; Zhou, Q. B.; Yu, H. B. ACS Appl. Mater. Interfaces 2019, 11, 37247.  doi: 10.1021/acsami.9b11180

    27. [27]

      Yan, H. L.; Yu, P.; Han, G. C.; Zhang, Q. H.; Gu, L.; Yi, Y. P.; Liu, H. B.; Li, Y. L.; Mao, L. Q. Angew. Chem. Int. Ed. 2019, 58, 746.  doi: 10.1002/anie.201809730

    28. [28]

      Guler, O.; Guler, S, H. Optik 2016, 127, 4630.  doi: 10.1016/j.ijleo.2016.02.033

    29. [29]

      Zhou, X. S.; Wu, T. B.; Ding, K. L; Hu, B. J.; Hou, M. Q.; Han, B. X. Chem. Commun. 2010, 46, 386.  doi: 10.1039/B914763B

    30. [30]

      Gunasekaran, S. G.; Dharmendirakumar, M. High Perform. Polym. 2014, 26, 274.  doi: 10.1177/0954008313511349

    31. [31]

      Morishita, T.; Okamoto, H.; Katagiri, Y.; Matsushita, M.; Fukumori, K. Chem. Commun. 2015, 51, 12068.  doi: 10.1039/C5CC04077A

    32. [32]

      Ding, J. H.; Zhao, H. C.; Wang, Q. L.; Peng, W. J.; Yu, H. B. Nanotechnology 2017, 28, 475602.  doi: 10.1088/1361-6528/aa8e3d

    33. [33]

      Lee, Y. H.; Liu, K. K.; Lu, A. Y.; Wu, C. Y.; Lin, C. T.; Zhang, W. J.; Su, C. Y.; Hsu, C. L.; Lin, T. H. RSC Adv. 2012, 2, 111.  doi: 10.1039/C1RA00703C

    34. [34]

      Lu, G. Y.; Wu, T. R.; Yuan, Q. H.; Wang, H. S.; Wang, H. M.; Ding, F. F.; Xie, X. M.; Jiang, M. H. Nat. Commun. 2015, 6, 6160.  doi: 10.1038/ncomms7160

    35. [35]

      Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; Ajayan, P. M. Nano Lett. 2010, 10, 3209.  doi: 10.1021/nl1022139

    36. [36]

      Tay, R. Y.; Griep, M. H.; Mallick, G.; Tsang, S. H.; Singh, R. S.; Tumlin, T.; Teo, E. H. T.; Karna, S. P. Nano Lett. 2014, 14, 839.  doi: 10.1021/nl404207f

    37. [37]

      Pakdel, A.; Zhi, C. Y.; Bando, Y.; Nakayama, T.; Golberg, D. ACS Nano 2011, 5, 6507.  doi: 10.1021/nn201838w

    38. [38]

      Lin, Y.; Williams, T. V.; Xu, T. B.; Cao, W.; Elsayed-Ali, H. E.; Connell, J. W. J. Phys. Chem. C 2011, 115, 2679.

    39. [39]

      Yu, B.; Xing, W. Y.; Guo, W. W.; Qiu, S. L.; Wang, X.; Lo, S. M.; Hu, Y. J. Mater. Chem. A 2016, 4, 7330.  doi: 10.1039/C6TA01565D

    40. [40]

      Sainsbury, T.; Satti, A.; May, P.; Wang, Z. M.; McGovern, I.; Gunko, Y. K.; Coleman, J. J. Am. Chem. Soc. 2012, 134, 18758.  doi: 10.1021/ja3080665

    41. [41]

      Cai, W.; Hong, N. N.; Feng, X. M.; Zeng, W. R.; Shi, Y. Q.; Zhang, Y.; Wang, B. B.; Hu, Y. Chem. Eng. J. 2017, 330, 309.  doi: 10.1016/j.cej.2017.07.162

    42. [42]

      Wu, Y. Q.; He, Y.; Zhou, T. G.; Chen, C. L.; Zhong, F.; Xia, Y. Q.; Xie, P.; Zhang, C. Prog. Org. Coat. 2020, 142, 105541.  doi: 10.1016/j.porgcoat.2020.105541

    43. [43]

      Wu, Y. Q.; He, Y.; Chen, C. L.; Zhong, F.; Li, H. J.; Chen, J. Y.; Zhou, T. G. Colloid Surf. A-Physicochem. Eng. Asp. 2020, 587, 124337.  doi: 10.1016/j.colsurfa.2019.124337

    44. [44]

      Li, J.; Cui, J. C.; Yang, J. Y.; Ma, Y.; Qiu, H. X.; Yang, J. H. Prog. Org. Coat. 2016, 99, 443.  doi: 10.1016/j.porgcoat.2016.07.008

    45. [45]

      Pourhashem, S.; Vaezi, M. R.; Rashidi, A.; Bagherzadeh, M. R. Prog. Org. Coat. 2017, 111, 47.  doi: 10.1016/j.porgcoat.2017.05.008

    46. [46]

      Raza, M. A.; Rehman, Z. U.; Ghauri, F. A. Thin Solid Films 2018, 663, 93.  doi: 10.1016/j.tsf.2018.07.046

    47. [47]

      Fan, Y. Z.; Yang, H. Z.; Fan, H. S.; Liu, Q.; Lv, C.; Zhao, X.; Yang, M. X.; Wu, J. J.; Cao, X. M. Materials 2020, 13, 2340.  doi: 10.3390/ma13102340

    48. [48]

      Liu, Z.; Li, J. H.; Liu, X. H. ACS Appl. Mater. Interfaces 2020, 12, 6503.  doi: 10.1021/acsami.9b21467

    49. [49]

      Gu, L.; Ding, J.-H.; Yu, H.-B. Prog. Chem. 2016, 28, 737(in Chinese).

    50. [50]

      Cui, G.; Bi, Z. X.; Zhang, R. Y.; Liu, J. G.; Yu, X.; Li, Z. L. Chem. Eng. J. 2019, 373, 104.  doi: 10.1016/j.cej.2019.05.034

    51. [51]

      Gyawali, G.; Adhikari, R.; Kim, H. S.; Cho, H. B.; Lee, S. W. ECS Electrochem. Lett. 2013, 2, C7.

    52. [52]

      Britun, V. F.; Kurdyumov, A. V.; Petrusha, I. A. Mater. Lett. 1999, 41, 83.  doi: 10.1016/S0167-577X(99)00108-1

    53. [53]

      Liu, Z.; Gong, Y. J.; Zhou, W.; Ma, L. L.; Yu, J. J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J.; Ajayan, P. M. Nat. Commun. 2013, 4, 1.

    54. [54]

      Yi, M.; Shen, Z. G.; Zhao, X. H.; Liang, S. S.; Liu, L. Appl. Phys. Lett. 2014, 104, 143101.  doi: 10.1063/1.4870530

    55. [55]

      Liu, K.; Zhang, G. G.; Pu, J. B.; Ma, F.; Wu, G. Z.; Lu, Z. H. Ceram. Int. 2018, 44, 13888.  doi: 10.1016/j.ceramint.2018.04.236

    56. [56]

      Zhang, J.; Yang, Y. C.; Lou, J. Nanotechnology 2016, 27, 364004.  doi: 10.1088/0957-4484/27/36/364004

    57. [57]

      Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M. Sci Rep 2017, 7, 42139.  doi: 10.1038/srep42139

    58. [58]

      Miller, R. J.; Adeleye, A. S.; Page, H. M.; Kui, L.; Lenihan, H. S.; Keller, A. A. J. Nanopart. Res. 2020, 22, 129.  doi: 10.1007/s11051-020-04875-x

    59. [59]

      Parra, C.; Montero-Silva, F.; Henríquez, R.; Flores, M.; Garín, C.; Ramírez, C.; Moreno, M.; Correa, J.; Seeger, M.; Haberle, P. ACS Appl. Mater. Interfaces 2015, 7, 6430.  doi: 10.1021/acsami.5b01248

    60. [60]

      Chilkoor, G.; Karanam, S. P.; Star, S.; Shrestha, N.; Sani, R. K.; Upadhyayula, V. K. K.; Ghoshal, D.; Koratkar, N. A.; Meyyappan, M.; Gadhamshetty, V. ACS Nano 2018, 12, 2242.  doi: 10.1021/acsnano.7b06211

    61. [61]

      Shen, L. T.; Zhao, Y. D.; Wang, Y.; Song, R. B.; Yao, Q.; Chen, S. S.; Chai, Y. J. Mater. Chem. A 2016, 4, 5044.  doi: 10.1039/C6TA01604A

    62. [62]

      Li, L. H.; Xing, T.; Chen, Y.; Jones, R. Adv. Mater. Interfaces 2014, 1, 1300132.  doi: 10.1002/admi.201300132

    63. [63]

      Percival, S. J.; Melia, M. A.; Alexander, C. L.; Nelson, D. W.; Schindelholz, E. J.; Spoerke, E. D. Surf. Coat. Int. 2020, 383, 125228.  doi: 10.1016/j.surfcoat.2019.125228

    64. [64]

      Zhang, X. F.; Chen, Y. Q.; Hu, J. M. Corros. Sci. 2020, 166, 108452.  doi: 10.1016/j.corsci.2020.108452

    65. [65]

      Sharifalhoseini, Z.; Entezari, M. H.; Davoodi, A.; Shahidi, M. J. Ind. Eng. Chem. 2020, 83, 333.  doi: 10.1016/j.jiec.2019.12.006

    66. [66]

      Ghomi, E. R.; Khorasani, S. N.; Kichi, M. K.; Dinari, M.; Ataei, S.; Enayati, M. H.; Koochaki, M. S.; Neisiany, R. E. Colloid. Polym. Sci. 2020, 298, 213.  doi: 10.1007/s00396-019-04597-0

    67. [67]

      Husain, E.; Narayanan, T. N.; Taha-Tijerina, J. J.; Vinod, S.; Vajtai, R.; Ajayan, P. M. ACS Appl. Mater. Interfaces 2013, 5, 4129.  doi: 10.1021/am400016y

    68. [68]

      Yi, M.; Shen, Z. G.; Liu, L.; Liang, S. S. RSC Adv. 2015, 5, 2983.  doi: 10.1039/C4RA09156F

    69. [69]

      Simonov, K.; Vinogradov, N. A.; Ng, M. L.; Vinogradov, A.; Mårtensson, N.; Preobrajenski, A. B. Surf. Sci. 2012, 606, 564.  doi: 10.1016/j.susc.2011.11.031

    70. [70]

      Petravic, M.; Peter, R.; Kavre, I.; Li, L. H.; Chen, Y.; Fan, L. J.; Yang, Y. W. Phys. Chem. Chem. Phys. 2010, 12, 15349.  doi: 10.1039/c0cp00984a

    71. [71]

      Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. ACS Nano 2012, 6, 1102.  doi: 10.1021/nn203507y

    72. [72]

      Sun, W.; Wang, L. D.; Wu, T. T.; Pan, Y. Q.; Liu, G. C. Carbon 2014, 79, 605.  doi: 10.1016/j.carbon.2014.08.021

    73. [73]

      Camilli, L.; Yu, F.; Cassidy, A.; Hornekaer, L.; Boggild, P. 2D Mater. 2019, 6, 022002.  doi: 10.1088/2053-1583/ab04d4

    74. [74]

      Sun, W.; Wang, L. D.; Wu, T. T.; Pan, Y. Q.; Liu, G. C. J. Electrochem. Soc. 2016, 163, C16.  doi: 10.1149/2.0301602jes

    75. [75]

      Chen, J.; Chen, B.; Li, J. Y.; Tong, X.; Zhao, H. C.; Wang, L. P. Polym. Int. 2017, 66, 659.  doi: 10.1002/pi.5296

    76. [76]

      Pathan, S.; Ahmad, S. J. Mater. Chem. A 2013, 1, 14227.  doi: 10.1039/c3ta13126b

    77. [77]

      Gu, L.; Liu, S.; Zhao, H. C.; Yu, H. B. ACS Appl. Mater. Interfaces 2015, 7, 17641.  doi: 10.1021/acsami.5b05531

    78. [78]

      Zhao, H. C.; Ding, J. H.; Yu, H. B. ChemistrySelect 2018, 3, 11277.  doi: 10.1002/slct.201802079

    79. [79]

      Yu, J. J.; Zhao, W. J.; Liu, G.; Wu, Y. M.; Wang, D. L. Surf. Topogr.-Metrol. Prop. 2018, 6, 034019.  doi: 10.1088/2051-672X/aad5ab

    80. [80]

      Cui, M. J.; Ren, S. M.; Qin, S. L.; Xue, Q. J.; Zhao, H. C.; Wang, L. P. Corros. Sci. 2018, 131, 187.  doi: 10.1016/j.corsci.2017.11.022

    81. [81]

      Zou, B. J.; Chang, X. J.; Yang, J. X.; Wang, S. C.; Xu, J. L.; Wang, S. R.; Samukawa, S.; Wang, L. Prog. Org. Coat. 2019, 133, 139.  doi: 10.1016/j.porgcoat.2019.04.040

    82. [82]

      Huang, H. W.; Huang, X. F.; Xie, Y. H.; Tian, Y. Q.; Jiang, X.; Zhang, X. Y.; Prog. Org. Coat. 2019, 130, 124.  doi: 10.1016/j.porgcoat.2019.01.059

    83. [83]

      Zhang, C. L.; He, Y.; Li, F.; Di, H. H.; Zhang, L.; Zhan, Y. Q. J. Alloy. Compd. 2016, 685, 743.  doi: 10.1016/j.jallcom.2016.06.220

    84. [84]

      Li, X. Y.; Bandyopadhyay, P.; Kshetri, T.; Kim, N. H.; Lee, J. H. J. Mater. Chem. A 2018, 6, 21501.  doi: 10.1039/C8TA08351G

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    9. [9]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    10. [10]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    11. [11]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(85)
  • Abstract views(3420)
  • HTML views(1011)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return