Citation: Wang Wenbin, Wen Qunlei, Liu Youwen, Zhai Tianyou. Research Progress of Surface and Interface Chemistry Regulate Two-dimensional Materials for Electrocatalytic Biomass Conversion[J]. Acta Chimica Sinica, ;2020, 78(11): 1185-1199. doi: 10.6023/A20060265 shu

Research Progress of Surface and Interface Chemistry Regulate Two-dimensional Materials for Electrocatalytic Biomass Conversion

  • Corresponding author: Liu Youwen, ywliu@hust.edu.cn Zhai Tianyou, zhaity@hust.edu.cn
  • Received Date: 24 June 2020
    Available Online: 5 August 2020

    Fund Project: the Hubei Provincial Natural Science Foundation of China 2019CFA002Project supported by the National Natural Science Foundation of China (Nos. 21805102, 21825103, 51727809) and the Hubei Provincial Natural Science Foundation of China (No. 2019CFA002)the National Natural Science Foundation of China 21825103the National Natural Science Foundation of China 51727809the National Natural Science Foundation of China 21805102

Figures(10)

  • Electrocatalytic biomass conversion, which utilizing the electrical energy generated by intermittent energy, drive biomass into high value-added organic chemicals, and usually can be coupled with water splitting for the production of high-purity hydrogen. It has the potential to significantly decrease fossil fuel consumption, optimize energy structure and solve environmental issues. However, because biomass possess multiple groups and its conversion involves multiple electrons, electrocatalytic biomass conversion suffer from low conversion efficiency, bad selectivity and poor stability. Surface and interface chemistry engineering, such as regulating intrinsic structure, generating vacancies, introducing heteroatom, and constructing synergistic interface, can design and modify two-dimensional electrocatalysts to optimize their electronic structure and geometric structure, and effectively improve the electrocatalytic efficiency, selectivity and stability. This review provides an overview of recent advances about the role of surface and interface chemistry played on electrocatalytic biomass conversion of two-dimensional materials. In addition, the authors also give some perspectives on the challenges and prospects in this field.
  • 加载中
    1. [1]

      Luna, P. D.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. Science 2019, 364, eaav3506.  doi: 10.1126/science.aav3506

    2. [2]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998.  doi: 10.1126/science.aad4998

    3. [3]

      Du, L.; Shao, Y.; Sun, J.; Yin, G.; Du, C.; Wang, Y. Catal. Sci. Technol. 2018, 8, 3216.  doi: 10.1039/C8CY00533H

    4. [4]

      Li, Z.; Luo, Y.; Jiang, Z.; Fang, Q.; Hu, C. Chin. J. Chem. 2020, 38, 178.  doi: 10.1002/cjoc.201900433

    5. [5]

      Li, C.; Zhang, Q.; Fu, Y. Acta Chim. Sinica. 2018, 76, 501.
       

    6. [6]

      Liu, R. Y.; Bae, M.; Buchwald, S. L. J. Am. Chem. Soc. 2018, 140, 1627.  doi: 10.1021/jacs.8b00643

    7. [7]

      Sun, J.; Wang, Y. ACS Catal. 2014, 4, 1078.  doi: 10.1021/cs4011343

    8. [8]

      Chen, Y.; Liu, H.; Cheng, Y.; Xie, Q. Acta Chim. Sinica. 2020, 78, 330.
       

    9. [9]

      Liao, G.; Wu, Y.-J.; Shi, B.-F. Acta Chim. Sinica. 2020, 78, 289.
       

    10. [10]

      Li, W.; Jiang, N.; Hu, B.; Liu, X.; Song, F.; Han, G.; Jordan, T. J.; Hanson, T. B.; Liu, T. L.; Sun, Y. Chem 2018, 4, 637.  doi: 10.1016/j.chempr.2017.12.019

    11. [11]

      Lu, F.; Yang, Z.; Wang, T.; Wang, T.; Zhang, Y.; Yuan, Y.; Lei, A. Chin. J. Chem. 2019, 37, 547.  doi: 10.1002/cjoc.201900113

    12. [12]

      You, B.; Liu, X.; Jiang, N.; Sun, Y. J. Am. Chem. Soc. 2016, 138, 13639.  doi: 10.1021/jacs.6b07127

    13. [13]

      Chi, J.; Yu, H. Chin. J. Catal. 2018, 39, 390.

    14. [14]

      Cheng, P.-F.; Feng, T.; Liu, Z.-W.; Wu, D.-Y.; Yang, J. Chin. J. Catal. 2019, 40, 1147.

    15. [15]

      Hang-shuo, L.; Xiao-bo, H.; Feng-xiang, Y.; Guo-ru, L. J. Electrochem. 2020, 26, 136.

    16. [16]

      You, H.; Zhuo, Z.; Lu, X.; Liu, Y.; Guo, Y.; Wang, W.; Yang, H.; Wu, X.; Li, H.; Zhai, T. CCS Chem. 2019, 1, 396.  doi: 10.31635/ccschem.019.20190022

    17. [17]

      Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Norskov, J. K. Nat. Mater. 2016, 16, 70.

    18. [18]

      Zhang, P.; Sun, L. Chin. J. Chem. 2020, 38, 996.  doi: 10.1002/cjoc.201900467

    19. [19]

      Liu, Y.; Xiao, C.; Huang, P.; Cheng, M.; Xie, Y. Chem 2018, 4, 1263.  doi: 10.1016/j.chempr.2018.02.006

    20. [20]

      Liu, Y.; Hua, X.; Xiao, C.; Zhou, T.; Huang, P.; Guo, Z.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2016, 138, 5087.  doi: 10.1021/jacs.6b00858

    21. [21]

      Zhu, W.; Ren, M.; Hu, N.; Zhang, W.; Luo, Z.; Wang, R.; Wang, J.; Huang, L.; Suo, Y.; Wang, J. ACS Sustainable Chem. Eng. 2018, 6, 5011.  doi: 10.1021/acssuschemeng.7b04663

    22. [22]

      Li, Y.; Lu, J.; Wang, X.; Zhang, H.; Wu, X.; Zhang, K. H. L.; Ye, J.; Zhan, D. ChemCatChem 2019, 11, 2277.  doi: 10.1002/cctc.201900437

    23. [23]

      Ojha, K.; Farber, E. M.; Burshtein, T. Y.; Eisenberg, D. Angew. Chem. Int. Ed. 2018, 57, 17168.  doi: 10.1002/anie.201810960

    24. [24]

      Wang, Z.; Xu, L.; Huang, F.; Qu, L.; Li, J.; Owusu, K. A.; Liu, Z.; Lin, Z.; Xiang, B.; Liu, X.; Zhao, K.; Liao, X.; Yang, W.; Cheng, Y.-B.; Mai, L. Adv. Energy Mater. 2019, 9, 1900390.  doi: 10.1002/aenm.201900390

    25. [25]

      Yang, W.; Yang, X.; Jia, J.; Hou, C.; Gao, H.; Mao, Y.; Wang, C.; Lin, J.; Luo, X. App. Catal. B:Environ. 2019, 244, 1096.  doi: 10.1016/j.apcatb.2018.12.038

    26. [26]

      Yang, W.; Yang, X.; Hou, C.; Li, B.; Gao, H.; Lin, J.; Luo, X. App. Catal. B:Environ. 2019, 259, 118020.  doi: 10.1016/j.apcatb.2019.118020

    27. [27]

      Wang, W.; Zhu, Y.-B.; Wen, Q.; Wang, Y.; Xia, J.; Li, C.; Chen, M.-W.; Liu, Y.; Li, H.; Wu, H.-A.; Zhai, T. Adv. Mater. 2019, 31, 1900528.  doi: 10.1002/adma.201900528

    28. [28]

      Zhu, X.; Dou, X.; Dai, J.; An, X.; Guo, Y.; Zhang, L.; Tao, S.; Zhao, J.; Chu, W.; Zeng, X. C.; Wu, C.; Xie, Y. Angew. Chem. Int. Ed. 2016, 55, 12465.  doi: 10.1002/anie.201606313

    29. [29]

      Li, K.; Sun, Y. Chem. Eur. J. 2018, 24, 18258.  doi: 10.1002/chem.201803319

    30. [30]

      Chen, L.; Shi, J. J. Mater. Chem. A. 2018, 6, 13538.  doi: 10.1039/C8TA03741H

    31. [31]

      Yu, Z.-Y.; Lang, C.-C.; Gao, M.-R.; Chen, Y.; Fu, Q.-Q.; Duan, Y.; Yu, S.-H. Energy Environ. Sci. 2018, 11, 1890.  doi: 10.1039/C8EE00521D

    32. [32]

      Boggs, B. K.; King, R. L.; Botte, G. G. Chem. Commun. 2009, 32, 4859.

    33. [33]

      Chen, S.; Duan, J.; Vasileff, A.; Qiao, S. Z. Angew. Chem. Int. Ed. 2016, 55, 3804.  doi: 10.1002/anie.201600387

    34. [34]

      Li, C.; Liu, Y.; Zhuo, Z.; Ju, H.; Li, D.; Guo, Y.; Wu, X.; Li, H.; Zhai, T. Adv. Energy Mater. 2018, 8, 1801775.  doi: 10.1002/aenm.201801775

    35. [35]

      Tang, C.; Zhang, R.; Lu, W.; Wang, Z.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Ed. 2017, 56, 842.  doi: 10.1002/anie.201608899

    36. [36]

      Wu, L.-S.; Dai, H.-B.; Wen, X.-P.; Wang, P. ChemElectroChem 2017, 4, 1944.  doi: 10.1002/celc.201700234

    37. [37]

      Ma, X.; Wang, J.; Liu, D.; Kong, R.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. New J. Chem. 2017, 41, 4754.  doi: 10.1039/C7NJ00326A

    38. [38]

      Wang, Y.; Chen, Z.; Wu, H.; Xiao, F.; Cao, E.; Du, S.; Wu, Y.; Ren, Z. ACS Sustainable Chem. Eng. 2018, 6, 15727.  doi: 10.1021/acssuschemeng.8b04274

    39. [39]

      Liu, M.; Zhang, R.; Zhang, L.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Kong, R.; Sun, X. Inorg. Chem. Front. 2017, 4, 420.  doi: 10.1039/C6QI00384B

    40. [40]

      Sun, H.; Ye, Y.; Liu, J.; Tian, Z.; Cai, Y.; Li, P.; Liang, C. Chem. Commun. 2018, 54, 1563.  doi: 10.1039/C7CC09361F

    41. [41]

      Chen, G.-F.; Luo, Y.; Ding, L.-X.; Wang, H. ACS Catal. 2017, 8, 526.

    42. [42]

      Fu, W.; Li, Y.; Liang, C. Acta Chim. Sinica. 2019, 77, 559.
       

    43. [43]

      Wu, K.; Zhou, Y.; Ma, X.; Ding, C.; Cai, W. Acta Chim. Sinica. 2018, 76, 292.
       

    44. [44]

      Lam, C. H.; Bloomfield, A. J.; Anastas, P. T. Green Chem. 2017, 19, 1958.  doi: 10.1039/C7GC00371D

    45. [45]

      Bott-Neto, J. L.; Martins, T. S.; Machado, S. r. A. S.; Ticianelli, E. A. ACS Appl. Mater. Interfaces 2019, 11, 30810.  doi: 10.1021/acsami.9b08441

    46. [46]

      You, B.; Liu, X.; Liu, X.; Sun, Y. ACS Catal. 2017, 7, 4564.  doi: 10.1021/acscatal.7b00876

    47. [47]

      Yin, Z.; Zheng, Y.; Wang, H.; Li, J.; Zhu, Q.; Wang, Y.; Ma, N.; Hu, G.; He, B.; Knop-Gericke, A.; Schlogl, R.; Ma, D. ACS Nano 2017, 11, 12365.  doi: 10.1021/acsnano.7b06287

    48. [48]

      Zheng, J.; Chen, X.; Zhong, X.; Li, S.; Liu, T.; Zhuang, G.; Li, X.; Deng, S.; Mei, D.; Wang, J.-G. Adv. Funct. Mater. 2017, 27, 1704169.  doi: 10.1002/adfm.201704169

    49. [49]

      Zhang, X.; Han, M.; Liu, G.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. App. Catal. B:Environ. 2019, 244, 899.  doi: 10.1016/j.apcatb.2018.12.025

    50. [50]

      Nam, D.-H.; Taitt, B. J.; Choi, K.-S. ACS Catal. 2018, 8, 1197.  doi: 10.1021/acscatal.7b03152

    51. [51]

      Liu, W.-J.; Dang, L.; Xu, Z.; Yu, H.-Q.; Jin, S.; Huber, G. W. ACS Catal. 2018, 8, 5533.  doi: 10.1021/acscatal.8b01017

    52. [52]

      Du, P.; Zhang, J.; Liu, Y.; Huang, M. Electrochem. Commun. 2017, 83, 11.  doi: 10.1016/j.elecom.2017.08.013

    53. [53]

      Liu, W. J.; Xu, Z.; Zhao, D.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S.; Huber, G. W.; Yu, H. Q. Nat. Commun. 2020, 11, 265.  doi: 10.1038/s41467-019-14157-3

    54. [54]

      Miao, J.; Teng, X.; Zhang, R.; Guo, P.; Chen, Y.; Zhou, X.; Wang, H.; Sun, X.; Zhang, L. App. Catal. B:Environ. 2020, 263, 118109.  doi: 10.1016/j.apcatb.2019.118109

    55. [55]

      Ding, Y.; Miao, B.-Q.; Li, S.-N.; Jiang, Y.-C.; Liu, Y.-Y.; Yao, H.-C.; Chen, Y. App. Catal. B:Environ. 2020, 268, 118393.  doi: 10.1016/j.apcatb.2019.118393

    56. [56]

      Huang, Y.; Chong, X.; Liu, C.; Liang, Y.; Zhang, B. Angew. Chem. Int. Ed. 2018, 57, 13163.  doi: 10.1002/anie.201807717

    57. [57]

      Lum, Y.; Huang, J. E.; Wang, Z.; Luo, M.; Nam, D.-H.; Leow, W. R.; Chen, B.; Wicks, J.; Li, Y. C.; Wang, Y.; Dinh, C.-T.; Li, J.; Zhuang, T.-T.; Li, F.; Sham, T.-K.; Sinton, D.; Sargent, E. H. Nat. Catal. 2020, 3, 14.  doi: 10.1038/s41929-019-0386-4

    58. [58]

      Zhou, Y.; Gao, Y.; Zhong, X.; Jiang, W.; Liang, Y.; Niu, P.; Li, M.; Zhuang, G.; Li, X.; Wang, J. Adv. Funct. Mater. 2019, 29, 1807651.  doi: 10.1002/adfm.201807651

    59. [59]

      Zhang, B.; Huang, C.; Huang, Y.; Liu, C.; Chong, X. Natl. Sci. Rev. 2020, 7, 285.  doi: 10.1093/nsr/nwz146

    60. [60]

      Liu, C.; Hirohara, M.; Maekawa, T.; Chang, R.; Hayashi, T.; Chiang, C.-Y. App. Catal. B:Environ. 2020, 265, 118543.  doi: 10.1016/j.apcatb.2019.118543

    61. [61]

      Dai, L.; Qin, Q.; Zhao, X.; Xu, C.; Hu, C.; Mo, S.; Wang, Y. O.; Lin, S.; Tang, Z.; Zheng, N. ACS Cent. Sci. 2016, 2, 538.  doi: 10.1021/acscentsci.6b00164

    62. [62]

      Zhang, N.; Zou, Y.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z.; Zhou, B.; Huang, G.; Lin, H.; Wang, S. Angew. Chem. Int. Ed. 2019, 58, 15895.  doi: 10.1002/anie.201908722

    63. [63]

      Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10, 5335.  doi: 10.1038/s41467-019-13375-z

    64. [64]

      Dai, H.; Wu, F.; Bai, D. Chin. J. Org. Chem. 2020, 40, 1423.

    65. [65]

      Li, Y.; Jiang, Y.; Jiang, P.; Du, S.; Jiang, J.; Leng, Y. Acta Chim. Sinica. 2019, 77, 66.
       

    66. [66]

      Zhai, Y.; Xu, W.; Meng, X.; Hou, H. Acta Chim. Sinica. 2020, 78, 256.
       

    67. [67]

      Zhang, Y.; Duan, H.-X.; Wang, Y.-Q. Chin. J. Org. Chem. 2020, 40, 1514.

    68. [68]

      Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; Arquer, F. P. G. d.; Dinh, C. T.; Fan, F.; Yuan, M.; Yassitepe, E.; Chen, N.; Regier, T.; Liu, P.; Li, Y.; Luna, P. D.; Janmohamed, A.; Xin, H. L.; Yang, H.; Vojvodic, A.; Sargent, E. H. Science 2016, 352, 333.  doi: 10.1126/science.aaf1525

    69. [69]

      Tan, C.; Luo, Z.; Chaturvedi, A.; Cai, Y.; Du, Y.; Gong, Y.; Huang, Y.; Lai, Z.; Zhang, X.; Zheng, L.; Qi, X.; Goh, M. H.; Wang, J.; Han, S.; Wu, X. J.; Gu, L.; Kloc, C.; Zhang, H. Adv. Mater. 2018, 30, 1705509.  doi: 10.1002/adma.201705509

    70. [70]

      Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. J. Am. Chem. Soc. 2015, 137, 3638.  doi: 10.1021/jacs.5b00281

    71. [71]

      Zhang, J. Y.; Wang, H.; Tian, Y.; Yan, Y.; Xue, Q.; He, T.; Liu, H.; Wang, C.; Chen, Y.; Xia, B. Y. Angew. Chem. Int. Ed. 2018, 57, 7649.  doi: 10.1002/anie.201803543

    72. [72]

      Gao, Y.; Wang, Q.; He, T.; Zhang, J.-Y.; Sun, H.; Zhao, B.; Xia, B. Y.; Yan, Y.; Chen, Y. Inorg. Chem. Front. 2019, 6, 2686.  doi: 10.1039/C9QI01005J

    73. [73]

      Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Adv. Mater. 2017, 29, 1701546.  doi: 10.1002/adma.201701546

    74. [74]

      Jia, X.; Zhang, X.; Zhao, J.; Zhao, Y.; Zhao, Y.; Waterhouse, G. I. N.; Shi, R.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. J. Energy Chem. 2019, 34, 57.  doi: 10.1016/j.jechem.2018.09.011

    75. [75]

      Dou, S.; Tao, L.; Wang, R.; El Hankari, S.; Chen, R.; Wang, S. Adv. Mater. 2018, 30, 1705850.  doi: 10.1002/adma.201705850

    76. [76]

      Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746.  doi: 10.1126/science.1200448

    77. [77]

      Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.; Wang, Y.; Zhang, Z.; Zhang, P.; Cao, X.; Song, B.; Jin, S. J. Am. Chem. Soc. 2016, 138, 7965.  doi: 10.1021/jacs.6b03714

    78. [78]

      He, Q.; Wan, Y.; Jiang, H.; Pan, Z.; Wu, C.; Wang, M.; Wu, X.; Ye, B.; Ajayan, P. M.; Song, L. ACS Energy Lett. 2018, 3, 1373.  doi: 10.1021/acsenergylett.8b00515

    79. [79]

      Zhang, L.; Wang, L.; Lin, H.; Liu, Y.; Ye, J.; Wen, Y.; Chen, A.; Wang, L.; Ni, F.; Zhou, Z.; Sun, S.; Li, Y.; Zhang, B.; Peng, H. Angew. Chem. Int. Ed. 2019, 58, 16820.  doi: 10.1002/anie.201909832

    80. [80]

      Zhang, X.; Zhao, Y.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. Adv. Energy Mater. 2019, 9, 1900881.  doi: 10.1002/aenm.201900881

    81. [81]

      Wang, W.; Wang, Y.; Yang, R.; Wen, Q.; Liu, Y.; Jiang, Z.; Li, H.; Zhai, T. Angew. Chem. Int. Ed. 2020, 59, 16974.  doi: 10.1002/anie.202005574

    82. [82]

      Zhao, Y.; Zhang, X.; Jia, X.; Waterhouse, G. I. N.; Shi, R.; Zhang, X.; Zhan, F.; Tao, Y.; Wu, L.-Z.; Tung, C.-H.; O'Hare, D.; Zhang, T. Adv. Energy Mater. 2018, 8, 1703585.  doi: 10.1002/aenm.201703585

    83. [83]

      Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P.; Duan, Y.; Ma, T.; Zheng, X. S.; Zhu, J. F.; Wang, H. J.; Gao, M. R.; Yu, S. H. J. Am. Chem. Soc. 2020, 142, 6400.  doi: 10.1021/jacs.0c01699

    84. [84]

      Du, C. F.; Sun, X.; Yu, H.; Fang, W.; Jing, Y.; Wang, Y.; Li, S.; Liu, X.; Yan, Q. InfoMat. 2020, 2, 950.  doi: 10.1002/inf2.12078

    85. [85]

      Wu, Y.; Liu, X.; Han, D.; Song, X.; Shi, L.; Song, Y.; Niu, S.; Xie, Y.; Cai, J.; Wu, S.; Kang, J.; Zhou, J.; Chen, Z.; Zheng, X.; Xiao, X.; Wang, G. Nat.Commun. 2018, 9, 1425.  doi: 10.1038/s41467-018-03858-w

    86. [86]

      Dong, B.; Li, W.; Huang, X.; Ali, Z.; Zhang, T.; Yang, Z.; Hou, Y. Nano Energy 2019, 55, 37.  doi: 10.1016/j.nanoen.2018.10.050

    87. [87]

      Liu, T.; Liu, D.; Qu, F.; Wang, D.; Zhang, L.; Ge, R.; Hao, S.; Ma, Y.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. Adv. Energy Mater. 2017, 7, 1700020.  doi: 10.1002/aenm.201700020

    88. [88]

      Dai, M.; Wang, J.; Li, L.; Wang, Q.; Liu, M.; Zhang, Y. Acta Chim. Sinica. 2020, 78, 355.
       

    89. [89]

      Wang, C.; Lu, H.; Mao, Z.; Yan, C.; Shen, G.; Wang, X. Adv. Funct. Mater. 2020, 30, 2000556.  doi: 10.1002/adfm.202000556

    90. [90]

      Huang, W.; Ma, X. Y.; Wang, H.; Feng, R.; Zhou, J.; Duchesne, P. N.; Zhang, P.; Chen, F.; Han, N.; Zhao, F.; Zhou, J.; Cai, W. B.; Li, Y. Adv. Mater. 2017, 29, 1703057.  doi: 10.1002/adma.201703057

    91. [91]

      Han, Y.; Li, P.; Liu, J.; Wu, S.; Ye, Y.; Tian, Z.; Liang, C. Sci. Rep. 2018, 8, 1359.  doi: 10.1038/s41598-018-19876-z

    92. [92]

      Huang, W.; Wang, H.; Zhou, J.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F.; Zeng, M.; Zhong, J.; Jin, C.; Li, Y.; Lee, S. T.; Dai, H. Nat. Commun. 2015, 6, 10035.  doi: 10.1038/ncomms10035

    93. [93]

      Yue, X.; Li, L.; Li, P.; Luo, C.; Pu, M.; Yang, Z.; Lei, M. Chin. J. Chem. 2019, 37, 883.  doi: 10.1002/cjoc.201900150

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    6. [6]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    9. [9]

      Fuxian Wan Ying Li Yuanhong Zhang Shuhua Zhu Jing Xu Yanfang Wang Lili Zhang . Exploration and Practice of Teaching in Agricultural Characteristic Organic Chemistry Course. University Chemistry, 2024, 39(2): 298-306. doi: 10.3866/PKU.DXHX202308041

    10. [10]

      Zhichang Xiao Xiaohui Li Ling Zhang Huimin Liu . Exploration of Ideological and Political Construction in University Foundation Course of Organic Chemistry. University Chemistry, 2024, 39(2): 314-320. doi: 10.3866/PKU.DXHX202308058

    11. [11]

      Gang Liu Heng Zhang Ying Ma Shiling Yuan Qisheng Song Zhenghu Xu Jichao Sun . Exploration and Practice on Improving the Teaching Quality of Organic Chemistry Laboratory Course. University Chemistry, 2024, 39(4): 70-74. doi: 10.3866/PKU.DXHX202309079

    12. [12]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    13. [13]

      Biaolin Yin Yuanfu Deng Dongen Lin . Exploration and Practice of Integrating Ideological and Political Education and Innovative Thinking into “Organic Chemistry” Teaching. University Chemistry, 2024, 39(2): 286-291. doi: 10.3866/PKU.DXHX202308026

    14. [14]

      Fei Xie Shichong Yu Ting Wang Yongsheng Jin Dazhi Zhang Yumeng Hao . Practice and Exploration of O-PIRTAS Flipped Classroom in Organic Chemistry Course. University Chemistry, 2024, 39(4): 238-243. doi: 10.3866/PKU.DXHX202310055

    15. [15]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Mengchen Liao Hua Yang Younian Liu Zhen He Maolin Zhang Qing Liu Jiwen Ding . Exploration and Implementation of Refined Management Practices in Basic Organic Chemistry Laboratories. University Chemistry, 2024, 39(10): 164-173. doi: 10.3866/PKU.DXHX202403041

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Weihua Jiang Yongsheng Zhou Qiaoqiao Teng . Progressive Teaching Model in the Practice and Exploration of Ideological and Political Education in Laboratory Courses: Taking the Organic Chemistry Experiment “Synthesis of Aspirin” as an Example. University Chemistry, 2024, 39(2): 99-104. doi: 10.3866/PKU.DXHX202306028

    20. [20]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

Metrics
  • PDF Downloads(44)
  • Abstract views(2128)
  • HTML views(523)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return