Citation: Zhang Pengcheng, Guo Jia, Zhu Gen, Fang Wenyu, Tang Qianyuan, Bao Lei, Kang Wenbin. Monte Carlo Simulations of Composition-Related Structural Transition of Disordered Peptides: The Case Study of Random Peptides Composed of Lysine, Glutamic Acids and Isoleucine[J]. Acta Chimica Sinica, ;2020, 78(9): 994-1000. doi: 10.6023/A20060249 shu

Monte Carlo Simulations of Composition-Related Structural Transition of Disordered Peptides: The Case Study of Random Peptides Composed of Lysine, Glutamic Acids and Isoleucine

  • Corresponding author: Tang Qianyuan, wbkang@hbmu.edu.cn Bao Lei, bolly@whu.edu.cn Kang Wenbin, tangqianyuan@gmail.com
  • Received Date: 18 June 2020
    Available Online: 13 July 2020

    Fund Project: the Natural Science Foundation of Hubei Provincial Department of Education B2018434the Cultivating Project for Young Scholar at Hubei University of Medicine 2018QDJZR22Project supported by the National Natural Science Foundation of China 11947006Project supported by the National Natural Science Foundation of China (No. 11947006), the Cultivating Project for Young Scholar at Hubei University of Medicine (Nos. 2019QDJZR12, 2018QDJZR22), and the Natural Science Foundation of Hubei Provincial Department of Education (No. B2018434).the Cultivating Project for Young Scholar at Hubei University of Medicine 2019QDJZR12

Figures(6)

  • Intrinsically disordered proteins (IDPs) are a unique class of proteins without stable native structures. Like globular proteins, the structure and the dynamics of IDPs are also encoded in their amino acid sequences. IDPs usually contain a larger proportion of hydrophilic or charged amino acids than globular proteins. Interestingly, even with the same hydrophobicity and number of charged residues, the differences in sequence arrangement can lead to different structures of the peptides. In this work, to model such an effect, we conduct molecular simulations based on a series of peptides with randomly composed of charged residues (including glutamic acids and lysines) and isoleucine. In the simulation, we use the ABSINTH (self-Assembly of Biomolecules Studied by an Implicit, Novel, and Tunable Hamiltonian) implicit solvation model and employ the all-atom Markov Chain Monte Carlo method with replica-exchange sampling. Our simulations clearly show a transition between the extended conformations to compact structures for each peptide. The corresponding transition temperature is found to be dependent on the portion of the hydrophobic and charged residues. When the mean hydrophobicity is larger than a certain threshold, the transition temperature is higher than the room temperature, and vice versa. Such a result has outlined the borderline between intrinsically disordered proteins and the folded proteins. It is also consistent with previous analysis based on bioinformatics techniques. Furthermore, the contributions of different kinds of interactions to the structural variation of peptides are analyzed based on the contact statistics and the charge-pattern dependence of the gyration radii of the peptides. Our simulation results imply that the hydrophobicity of the sequence dominates the order-disorder transitions of IDPs, while the charge distribution can also affect such transitions. Based on these results, we achieve a comprehensive understanding of the sequence-structure relation of the natural proteins and the underlying physics. Our results may broaden our perspective of the sequence-structure relation of protein systems and shed light on the design of both ordered and disordered proteins.
  • 加载中
    1. [1]

      Kister, A. E.; Potapov, V. Biochem. Soc. Trans. 2013, 41, 616.  doi: 10.1042/BST20120308

    2. [2]

      Sadowski, M. I.; Jones, D. T. Curr. Opin. Struct. Biol. 2009, 19, 357.  doi: 10.1016/j.sbi.2009.03.008

    3. [3]

      Shenoy, S. R.; Jayaram, B. Curr. Protein Pept. Sci. 2010, 11, 498.  doi: 10.2174/138920310794109094

    4. [4]

      Chu, X.; Gan, L.; Wang, E.; Wang, J. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E2342.  doi: 10.1073/pnas.1220699110

    5. [5]

      Daggett, V.; Fersht, A. Nat. Rev. Mol. Cell Biol. 2003, 4, 497.  doi: 10.1038/nrm1126

    6. [6]

      Daggett, V.; Fersht, A. R. Trends Biochem. Sci. 2003, 28, 18.  doi: 10.1016/S0968-0004(02)00012-9

    7. [7]

      Dinner, A. R.; Sali, A.; Smith, L. J.; Dobson, C. M.; Karplus, M. Trends Biochem. Sci. 2000, 25, 331.  doi: 10.1016/S0968-0004(00)01610-8

    8. [8]

      Leelananda, S. P.; Jernigan, R. L.; Kloczkowski, A. J. Comput. Biol. 2016, 23, 400.  doi: 10.1089/cmb.2015.0209

    9. [9]

      Li, H.; Helling, R.; Tang, C.; Wingreen, N. Science 1996, 273, 666.  doi: 10.1126/science.273.5275.666

    10. [10]

      Matouschek, A.; Serrano, L.; Fersht, A. R. J. Mol. Biol. 1992, 224, 819.  doi: 10.1016/0022-2836(92)90564-Z

    11. [11]

      Onuchic, J. N.; Luthey-Schulten, Z.; Wolynes, P. G. Annu. Rev. Phys. Chem. 1997, 48, 545.  doi: 10.1146/annurev.physchem.48.1.545

    12. [12]

      Schug, A.; Onuchic, J. N. Curr. Opin. Pharmacol. 2010, 10, 709.  doi: 10.1016/j.coph.2010.09.012

    13. [13]

      Wang, J.; Wang, W. Nat. Struct. Biol. 1999, 6, 1033.  doi: 10.1038/14918

    14. [14]

      Wang, J.; Wang, W. Adv. Phys. X 2016, 1, 444.
       

    15. [15]

      Wolynes, P. G. Biochimie 2015, 119, 218.  doi: 10.1016/j.biochi.2014.12.007

    16. [16]

      Apicella, A.; Marascio, M.; Colangelo, V.; Soncini, M.; Gautieri, A.; Plummer, C. J. J. Biomol. Struct. Dyn. 2017, 35, 1813.  doi: 10.1080/07391102.2016.1196151

    17. [17]

      Dyson, H. J.; Wright, P. E. Nat. Rev. Mol. Cell Biol. 2005, 6, 197.  doi: 10.1038/nrm1589

    18. [18]

      Gao, M.; Yang, F.; Zhang, L.; Su, Z.; Huang, Y. J. Biomol. Struct. Dyn. 2018, 36, 1171.  doi: 10.1080/07391102.2017.1316519

    19. [19]

      Jain, A.; Ashbaugh, H. S. J. Chem. Phys. 2008, 129, 174505.  doi: 10.1063/1.3003577

    20. [20]

      Kang, W. B.; He, C.; Liu, Z. X.; Wang, J.; Wang, W. J. Biomol. Struct. Dyn. 2019, 37 1956.  doi: 10.1080/07391102.2018.1472669

    21. [21]

      Khan, S. H.; Jasuja, R.; Kumar, R. J. Biomol. Struct. Dyn. 2017, 35, 2248.  doi: 10.1080/07391102.2016.1214086

    22. [22]

      Migliaccio, A. R.; Uversky, V. N. J. Biomol. Struct. Dyn. 2018, 36, 1617.  doi: 10.1080/07391102.2017.1330224

    23. [23]

      Oldfield, C. J.; Dunker, A. K. Annu. Rev. Biochem. 2014, 83, 553.  doi: 10.1146/annurev-biochem-072711-164947

    24. [24]

      Singh, I.; Singh, S.; Uversky, V. N.; Chandra, R. J. Biomol. Struct. Dyn. 2017, 1.
       

    25. [25]

      Uversky, V. N.; Oldfield, C. J.; Dunker, A. K. Annu. Rev. Biophys. 2008, 37, 215.  doi: 10.1146/annurev.biophys.37.032807.125924

    26. [26]

      Yacoub, H. A.; Al-Maghrabi, O. A.; Ahmed, E. S.; Uversky, V. N. J. Biomol. Struct. Dyn. 2017, 35, 836.  doi: 10.1080/07391102.2016.1164077

    27. [27]

      Uversky, V. N. Protein Sci. 2002, 11, 739.  doi: 10.1110/ps.4210102

    28. [28]

      Uversky, V. N.; Gillespie, J. R.; Fink, A. L. Proteins 2000, 41, 415.  doi: 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7

    29. [29]

      Das, R. K.; Pappu, R. V. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 13392.  doi: 10.1073/pnas.1304749110

    30. [30]

      Mao, A. H.; Crick, S. L.; Vitalis, A.; Chicoine, C. L.; Pappu, R. V. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 8183.  doi: 10.1073/pnas.0911107107

    31. [31]

      Kang, W. B.; Wang, J.; Wang, W. Acta Phys. Sin. 2018, 67, 058701.
       

    32. [32]

      Yue, K.; Dill, K. A. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 146.  doi: 10.1073/pnas.92.1.146

    33. [33]

      Ashbaugh, H. S.; Asthagiri, D. J. Chem. Phys. 2008, 129, 204501.
       

    34. [34]

      Ashbaugh, H. S.; Hatch, H. W. J. Am. Chem. Soc. 2008, 130, 9536.  doi: 10.1021/ja802124e

    35. [35]

      Vitalis, A.; Pappu, R. V. J. Comput. Chem. 2009, 30, 673.  doi: 10.1002/jcc.21005

    36. [36]

      Vitalis, A.; Pappu, R. V. Annu. Rep. Comput. Chem. 2009, 5, 49.  doi: 10.1016/S1574-1400(09)00503-9

    37. [37]

      Jiang, P.; Yasar, F.; Hansmann, U. H. J. Chem. Theory Comput. 2013, 9, 3816.  doi: 10.1021/ct400312d

    38. [38]

      Mitsutake, A.; Okamoto, Y. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2009, 79, 047701.  doi: 10.1103/PhysRevE.79.047701

    39. [39]

      Nanias, M.; Czaplewski, C.; Scheraga, H. A. J. Chem. Theory Comput. 2006, 2, 513.  doi: 10.1021/ct050253o

    40. [40]

      Yoda, T.; Sugita, Y.; Okamoto, Y. Proteins 2007, 66, 846.
       

    41. [41]

      Kyte, J.; Doolittle, R. F. J. Mol. Biol. 1982, 157, 105.  doi: 10.1016/0022-2836(82)90515-0

    42. [42]

      Das, R. K.; Crick, S. L.; Pappu, R. V. J. Mol. Biol. 2012, 416, 287.  doi: 10.1016/j.jmb.2011.12.043

    43. [43]

      Pappu, R. V.; Wang, X.; Vitalis, A.; Crick, S. L. Arch. Biochem. Biophys. 2008, 469, 132.  doi: 10.1016/j.abb.2007.08.033

    44. [44]

      Jin, F.; Liu, Z. R.; Biophys. J. 2013, 104, 488.  doi: 10.1016/j.bpj.2012.12.012

    45. [45]

      Ruff, K. M.; Pappu, R. V.; Holehouse, A. S. Curr. Opin. Struct. Biol. 2019, 56, 1.
       

    46. [46]

      Choi, J. M.; Dar, F.; Pappu, R. V. PLOS Comp. Biol. 2019, 15, e1007028.  doi: 10.1371/journal.pcbi.1007028

    47. [47]

      Zhou, H. X.; Nguemaha, V.; Mazarakos, K.; Qin, S. B. Trends Biochem. Sci. 2018, 43, 499.  doi: 10.1016/j.tibs.2018.03.007

    48. [48]

      Dignon, G. L.; Zheng, W. W.; Best, R. B.; Kim, Y. C.; Mittal, J. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 9929.  doi: 10.1073/pnas.1804177115

    49. [49]

      Uversky, V. N. Curr. Opin. Struc. Biol. 2017, 44, 18.  doi: 10.1016/j.sbi.2016.10.015

    50. [50]

      Zhang, P. C.; Fang, W. Y.; Bao, L.; Kang, W. B. Acta Phys. Sin. 2020, 69, 138701(in Chinese).
       

    51. [51]

      Wang, G. C.; Cui, Y. B.; Sun, Y. H.; Zhong, B. Acta Chim. Sinica 1998, 56, 867(in Chinese).
       

    52. [52]

      Cao, D. P.; Wang, W. C.; Duan, X.; Jiao, Q. Z. Acta Chim. Sinica 2001, 59, 297(in Chinese).
       

    53. [53]

      Wang, D. C. Protein Engineering, Vol. 1, Chemical Industry Press, Beijing, 2008, p. 65(in Chinese).
       

    54. [54]

      Deng, H. Y.; Jia, Y.; Zhang, Y Acta Phys. Sin. 2016, 65, 178701(in Chinese).
       

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    5. [5]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

Metrics
  • PDF Downloads(14)
  • Abstract views(2201)
  • HTML views(290)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return