Citation: Shen Feng, Lu Long, Shen Qilong. N-[(Diethoxyphosphoryl)difluoromethylthio]phthalimide: A New Electrophilic Fluoroalkylthiolating Reagent[J]. Acta Chimica Sinica, ;2020, 78(9): 933-937. doi: 10.6023/A20060248 shu

N-[(Diethoxyphosphoryl)difluoromethylthio]phthalimide: A New Electrophilic Fluoroalkylthiolating Reagent

  • Corresponding author: Lu Long, lulong@sioc.ac.cn Shen Qilong, shenql@mail.sioc.ac.cn
  • Received Date: 18 June 2020
    Available Online: 23 July 2020

    Fund Project: Project supported by the National Natural Science Foundation of China 21632009the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000Project supported by the National Natural Science Foundation of China 21421002Project supported by the National Natural Science Foundation of China 21625206Project supported by the National Natural Science Foundation of China (Nos. 21625206, 21632009, 21421002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000).

Figures(2)

  • A shelf-stable reagent for the preparation of fluoroalkylthiolated compounds, [(diethylphosphonate)difluoro-methylthio]phthalimide 1, was successfully developed, which reacted with a variety of nucleophiles such as electron-rich heteroarenes, β-ketoesters, oxindoles, benzofuranones in high yield, thus providing a new and efficient approach for the introduction of fluoroalkylthiolated phosphonate moiety. General procedure for the preparation of[(diethylphosphonate)difluoromethylthio]phthalimide 1:to a suspension of silver fluoride (7.6 g, 60 mmol) in anhydrous acetonitrile (100 mL) was added diethyl (difluoro(trimethylsilyl)methyl)phosphonate (13.0 g, 50.0 mmol) at -40℃. The mixture was allowed to stir at 0℃ until a dark brown solution was formed (approximately 15 min). N-(Chlorosulfenyl)phalimide (16.0 g, 75.0 mmol) was then added at -40℃, and the resulting mixture was stirred at -40℃ for 2 h. The mixture was filtered, and the solvent was evaporated in vacuo. The residue was recrystallized using the mixed solvent (petroleum ether/dichlor-omethane) three times to give[(diethylphosphonate)difluoromethylthio]phthalimide 1 as a white solid (5.5 g, 30%). General procedure for reaction of indoles with 1:to a 25 mL Schlenk tube charged with indole (35.1 mg, 0.3 mmol) and reagent 1 (132 mg, 0.36 mmol) and magnesium bromide (82 mg, 0.45 mmol) was added 1,2-dichloroethane (2.0 mL). The mixture was stirred at room temperature for 15 min. The mixture was filtered and the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel to give diethyl (((1H-indol-3-yl)thio)difluoromethyl)phosphonate 3a (93 mg, 93%) as a brown oil. General procedure for reaction of soft carbon nucleophile with reagent 1:to a 25 mL Schlenk tube charged with carbon nucleophiles (153 mg, 0.750 mmol), K2CO3 (103 mg, 0.75 mmol) and reagent 1 (182 mg, 0.50 mmol) was added dichloromethane (3.0 mL). The mixture was stirred at room temperature for 12 h. The reaction mixture was filtered and the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel to give ethyl-2-(((diethoxyphosphoryl)difluoromethyl)thio)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate 5b (160 mg, 76%) as a yellow oil.
  • 加载中
    1. [1]

      (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.(b) Landelle, G.; Panossian, A.; Leroux, F. R. Current Top. Med. Chem. 2014, 14, 941.(c) Ni, C.-F.; Hu, M.-Y.; Hu, J.-B. Chem. Rev. 2015, 115, 765.

    2. [2]

      (a) Rico, I.; Wakselman, C. Tetrahedron Lett. 1981, 22, 323.(b) Fujita, T.; Iwasa, J.; Hansch, C. J. Am. Chem. Soc. 1964, 66, 5175.(c) Landelle, G.; Panossian, A.; Leroux, F. R. Curr. Topics in Med. Chem. 2014, 14, 941.(d) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.

    3. [3]

    4. [4]

      Selected examples for the development of electrophilic trifluoromethylthiolating reagents:(a) Ferry, A.; Billard, T. Angew. Chem. Int. Ed. 2009, 48, 8551.(b) Baert, F.; Billard, T. Angew. Chem. Int. Ed. 2012, 51, 10382.(c) Alazet, S.; Zimmer, L.; Billard, T. Angew. Chem. Int. Ed. 2013, 52, 10814.(d) Yang, Y.-D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am. Chem. Soc. 2013, 135, 8782.(e) Shao, X.-X.; Wang, X.-Q.; Yang, T.; Lu, L.; Shen, Q. Angew. Chem. Int. Ed. 2013, 52, 3457.(f) Xu, C.; Ma, B.; Shen, Q. Angew. Chem. Int. Ed. 2014, 53, 9316.(g) Xu, J.-B.; Chen, P.-H.; Ye, J.-X.; Liu, G.-S. Acta Chim. Sinica. 2015, 73, 1294;(h) Zhang, P.-P; Li, M.; Xue, X.-S.; Xu, C.; Zhao, Q.; Liu, Y.; Wang, H.; Guo, Y.; Lu, L.; Shen, Q. J. Org. Chem. 2016, 81, 7486.(i) Zhang, H.; Leng, X.-B.; Wan, X. L.; Shen, Q. Org. Chem. Front. 2017, 4, 1051.(j) Lu, S.-Y.; Chen, W.-B.; Shen, Q. Chin. Chem. Lett. 2019, 30, 2279.(k) Zhang, H.; Wan, X.-L.; Shen, Q. Chin. J. Chem. 2019, 37, 1041.(l) Yang, X. G.; Zheng, K.; Zhang, C. Org. Lett. 2020, 20, 2026.(m) Shen, F.; Lu, L.; Shen, Q. Chem. Sci. 2020, 11, 8020.

    5. [5]

    6. [6]

      Ismalaj, E.; Bars, D. L.; Billard, T. Angew. Chem. Int. Ed. 2016, 55, 4790.

    7. [7]

      Xiong, H.-Y.; Bayle, A.; Pannecoucke, X.; Besset, T. Angew. Chem. Int. Ed. 2016, 55, 13490.

    8. [8]

      Shen, F.; Zhang, P.-P.; Lu, L.; Shen, Q. Org. Lett. 2017, 19, 1032.

    9. [9]

      Ivanova, M. V.; Bayle, A.; Besset, T.; Pannecoucke, X.; Poisson, T. Chem. Eur. J. 2016, 22, 10284.

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    5. [5]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    6. [6]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    7. [7]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    8. [8]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    13. [13]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    14. [14]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    15. [15]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    16. [16]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(8)
  • Abstract views(2251)
  • HTML views(190)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return