Citation: Lu Xiaoqing, Cao Shoufu, Wei Xiaofei, Li Shaoren, Wei Shuxian. Investigation on Oxygen Reduction Reaction Mechanism on S Doped Fe-NC lsolated Single Atoms Catalyst[J]. Acta Chimica Sinica, ;2020, 78(9): 1001-1006. doi: 10.6023/A20060223 shu

Investigation on Oxygen Reduction Reaction Mechanism on S Doped Fe-NC lsolated Single Atoms Catalyst

  • Corresponding author: Lu Xiaoqing, luxq@upc.edu.cn Wei Shuxian, wshx@upc.edu.cn
  • Received Date: 10 June 2020
    Available Online: 25 July 2020

    Fund Project: Project supported by the Major Scientific and Technological Projects of China National Petroleum Corporation (ZD2019-184-001) and Fundamental Research Funds for the Central Universities (18CX02042A and 18CX05011A)Fundamental Research Funds for the Central Universities 18CX05011Athe Major Scientific and Technological Projects of China National Petroleum Corporation ZD2019-184-001Fundamental Research Funds for the Central Universities 18CX02042A

Figures(5)

  • Heteratom-doped Fe-NC catalyst is promising for highly efficiently oxygen reduction reaction (ORR). In this work, density functional theory with the Vienna Ab initio Simulation Package (VASP) has been employed to systematically study the electronic structure regulation mechanism and oxygen reduction promoting mechanism on sulfur atom doped Fe-NC catalyst. The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional within a generalized gradient approximation (GGA) was used in this work. The computataional hydrogen electron model was used to calculate the changes in Gibbs free energy. To consider the influence of S doping proportion, we build FeNSx models with 1~4 S atoms. The thermodynamic stability of catalysts was firstly considered based on formation energy, following by electronic structure analysis through Bader charge analysis and densities of states. Then, the oxygen adsorption ability was considered based on oxygen adsorption configurations and energies analyses. At last, reaction overpotentials were calculated based on computational hydrogen electrode model to study activity of catalytic sites. The results show that the catalyst doped with few sulfur atoms around the active sites of FeN4 could remain stable. Three possible ORR promoting mechanisms of S atoms doping were investigated. Firstly, the doping of sulfur atoms would reduce the band gap of the catalyst, thus improving the conductivity of the catalyst, which is beneficial to electrocatalytic oxygen reduction reactions. Secondly, the doping of a small amount of S atoms can improve the affinity between oxygen and the catalysts, which is also important for oxygen reduction reaction. At last, the introduction of four S atoms in the system would reduce the overpotential of ORR, thus improving the activity of the active sites to catalyze the oxygen reduction reaction. Our results predict that few S atoms doping would improve ORR performance of the Fe-NC catalyst through reducing band gap, improving ability to adsorb oxygen, and improving catalytic activity of FeN4 site. This work may give a new insight into regulation rules of heteratom doping on single atom catalysts based on carbon materials.
  • 加载中
    1. [1]

      Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Gttle, A. J.; Koper, M. T. M. Nature Energy 2019, 732.
       

    2. [2]

      Zhao, W. C; Xu, X.; Bai, H.; Zhang, J.; Lu, S.; Xiang, Y. Acta Chim. Sinica 2020, 78, 69(in Chinese).
       

    3. [3]

      Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Nat. Chem. 2011, 3, 546.  doi: 10.1038/nchem.1069

    4. [4]

      Li, J.; Feng, X.; Wei, Z. D. J. Electrochem. 2018, 24, 22(in Chinese).
       

    5. [5]

      Wang, Y. J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Chem. Rev. 2015, 115, 3433.  doi: 10.1021/cr500519c

    6. [6]

      Dai, L.; Xue, Y.; Qu, L.; Choi, H. J.; Baek, J. B. Chem. Rev. 2015, 115, 4823.  doi: 10.1021/cr5003563

    7. [7]

      Strickland, K.; Miner, E.; Jia, Q.; Tylus, U.; Ramaswamy, N.; Liang, W.; Sougrati, M. T.; Jaouen, F.; Mukerjee, S. Nat. Chem. 2015, 6, 7343.
       

    8. [8]

      (a) Huang, W. J.; Zhang, H. Y.; Hu, S.-Z.; Niu, D. F.; Zhang, X.S. Acta Chim. Sinica 2018, 76, 723(in Chinese). (黄文姣, 张浩宇, 胡硕真, 钮东方, 张新胜, 化学学报, 2018, 76, 723);

    9. [9]

      Chang, Z. W.; Meng, F. L.; Zhong, H. X.; Zhang, X. B. Chin. J. Chem. 2018, 36, 287.  doi: 10.1002/cjoc.201700752

    10. [10]

      Li, Q.; Chen, W.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L.; Zheng, X.; Yan, W.; Cheong, W. C.; Shen, R.; Fu, N.; Gu, L.; Zhuang, Z.; Chen, C.; Wang, D.; Peng, Q.; Li, J.; Li, Y. Adv. Mater. 2018, 30, e1800588.
       

    11. [11]

      Chen, P.; Zhou, T.; Xing, L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L.; Yan, W.; Chu, W.; Wu, C. Angew. Chem., Int. Ed. 2017, 129, 625.  doi: 10.1002/ange.201610119

    12. [12]

      Hu, K.; Tao, L.; Liu, D.; Huo, J.; Wang, S. ACS Appl. Mater. Interfaces 2016, 8, 30.
       

    13. [13]

      Naveen, M. H.; Shim, K.; Hossain, M. S. A.; Kim, J. H.; Shim, Y. B. Adv. Energy Mater. 2017, 7, 1602002.  doi: 10.1002/aenm.201602002

    14. [14]

      Ji, L.; Yan, J.; Jaroniec, M.; Shi, Z. Q. Angew. Chem., Int. Ed. 2012, 51, 11808.
       

    15. [15]

      Shen, H.; Gracia-Espino, E.; Ma, J.; Zang, K.; Luo, J.; Wang, L.; Gao, S.; Mamat, X.; Hu, G.; Wagberg, T. Angew. Chem., Int. Ed. 2017, 129, 13988.  doi: 10.1002/ange.201706602

    16. [16]

       

    17. [17]

      Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886.  doi: 10.1021/jp047349j

    18. [18]

      Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169.  doi: 10.1103/PhysRevB.54.11169

    19. [19]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  doi: 10.1103/PhysRevLett.77.3865

    20. [20]

      Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. J. Chem. Phys. 2014, 140, 084106.  doi: 10.1063/1.4865107

    21. [21]

      Guo, C.; Wei, S.; Zhou, S.; Zhang, T.; Wang, Z.; Ng, S. P.; Lu, X.; Wu, C. M. L.; Guo, W. J. ACS Appl. Mater. Interfaces 2017, 9, 26107.  doi: 10.1021/acsami.7b07945

    22. [22]

      Chen, Z.; Zhao, J.; Cabrera, C. R.; Chen, Z. F. Small Methods 2019, 3, 1800368.  doi: 10.1002/smtd.201800368

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    17. [17]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    18. [18]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(29)
  • Abstract views(3413)
  • HTML views(671)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return