Citation: Sun Lian, Wang Honglei, Yu Jinshan, Zhou Xingui. Recent Progress on Proton-Conductive Metal-Organic Frameworks and Their Proton Exchange Membranes[J]. Acta Chimica Sinica, ;2020, 78(9): 888-900. doi: 10.6023/A20060221 shu

Recent Progress on Proton-Conductive Metal-Organic Frameworks and Their Proton Exchange Membranes

  • Corresponding author: Zhou Xingui, zhouxinguilmy@163.com
  • Received Date: 9 June 2020
    Available Online: 30 July 2020

    Fund Project: the National Natural Science Foundation of China 51502343the National Natural Science Foundation of China 91426304Project supported by the National Natural Science Foundation of China (Nos. 91426304, 51372274, 51502343).the National Natural Science Foundation of China 51372274

Figures(14)

  • Proton exchange membranes (PEMs) are important components for novel fuel cells. A significant effort has been made by researchers towards proton conductive materials and membranes, some of which have been successfully commercialized. However, commercial perfluorosulfonic acid membranes like Nafion suffer key issues which limit their large-scale applications in a wide temperature range, including high cost and low operation temperature. Therefore, it is highly desirable to prepare new-type PEMs possessing high proton conductivity, thermal and chemical stability, water uptake and excellent durability. Metal organic frameworks (MOFs) are attractive candidates for proton exchange membranes due to their high porosity, ordering pore structures and excellent designability. This review focuses on the recent progress on proton-conductive MOF structures and their proton exchange membranes. In the first section, the authors briefly introduce the proton conducting mechanism of MOFs and their testing methods. The Grotthuss mechanism refers to the proton transferring process in a continuous and long-range hydrogen network, whereas the Vehicular mechanism involves in the diffusion of proton carrier molecules. Then in the next section, the authors summarize the progress on bulk MOFs proton conductors. According to the work condition, proton-conducting MOFs can be divided into two types, namely working under humid and anhydrous environment. These works show the potential of proton-conductive MOFs to be applied in a wide temperature range, and some of them even have reached a relatively high conductivity larger than 10-2 S·cm-1, comparable with Nafion. In the third section, a review on the MOFs-based proton exchange membranes is shown. Researchers have proven that MOFs thin films have huge potential on proton conduction. Nevertheless, most of the MOFs-based PEMs are still mixed matrix membrane (MMM) structure. In order to boost the performance of MMMs-type MOFs-based PEMs, several strategies can be applied such as modifying MOF with functional groups, using 1D/2D MOFs structure and introducing the third phase into membranes. Last, the authors discuss the current issues and perspectives on MOFs proton conductors and their PEMs.
  • 加载中
    1. [1]

      Escorihuela, J.; Narducci, R.; Compa, V.; Costantino, F. Adv. Mater. Interfaces 2019, 6, 1801146.
       

    2. [2]

      Haubold, H. G.; Vad, T.; Jungbluth, H.; Hiller, P. Electrochim. Acta 2001, 46, 1559.  doi: 10.1016/S0013-4686(00)00753-2

    3. [3]

      Jaafar, J.; Nordin, M.; Hadi, N. A.; Ismail, A. F.; Othman, M. H. D.; A Rahman, M.; Aziz, F. J. Membr. Sci. Res. 2019, 5, 65.
       

    4. [4]

      Fang, J.; Shen, P. K. J. Membr. Sci. 2006, 285, 317.  doi: 10.1016/j.memsci.2006.08.037

    5. [5]

      Zhang, Y.; Zheng, L.; Liu, B.; Wang, H.; Shi, H. J. Membr. Sci. 2019, 584, 173.  doi: 10.1016/j.memsci.2019.04.073

    6. [6]

      Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242(in Chinese).
       

    7. [7]

      Qiao, W.; Song, T.; Zhao, B. Chin. J. Chem. 2019, 37, 474.
       

    8. [8]

      Dai, M. M.; Wang, J.; Li, L. G.; Wang, Q.; Liu, M. N.; Zhang, Y. G. Acta Chim. Sinica 2020, 78, 355(in Chinese).
       

    9. [9]

      He, T.; Zhang, Y.-Z.; Wu, H.; Kong, X.-J.; Liu, X.-M.; Xie, L.-H.; Dou, Y.; Li, J.-R. ChemPhysChem 2017, 18, 3245.  doi: 10.1002/cphc.201700650

    10. [10]

      Kanda, S.; Yamashita, K.; Ohkawa, K. Bull. Chem. Soc. Jpn. 1979, 52, 3296.  doi: 10.1246/bcsj.52.3296

    11. [11]

      Shimizu, G. K. H.; Taylor, J. M.; Kim, S. Science 2013, 341, 354.  doi: 10.1126/science.1239872

    12. [12]

      Ye, Y.; Gong, L.; Xiang, S.; Zhang, Z.; Chen, B. Adv. Mater. 2020, 32, 1907090.  doi: 10.1002/adma.201907090

    13. [13]

      Lim, D. W.; Kitagawa, H. Chem. Rev. 2020, 120, 8416.  doi: 10.1021/acs.chemrev.9b00842

    14. [14]

      Li, W.-H.; Deng, W.-H.; Wang, G.-E.; Xu, G. EnergyChem 2020, 2, 100029.  doi: 10.1016/j.enchem.2020.100029

    15. [15]

      Agmon, N. Chem. Phys. Lett. 1995, 244, 456.  doi: 10.1016/0009-2614(95)00905-J

    16. [16]

      Kreuer, K. D.; Rabenau, A.; Weppner, W. Angew. Chem. Int. Ed. 1982, 21, 208.
       

    17. [17]

      Zhang, J.; Bai, H.-J.; Ren, Q.; Luo, H.-B.; Ren, X.-M.; Tian, Z.-F.; Lu, S. ACS Appl. Mater. Interfaces 2018, 10, 28656.  doi: 10.1021/acsami.8b09070

    18. [18]

      Wang, Z. T.; Li, H.; Yan, S. C.; Fang, Q. R. Acta Chim. Sinica 2020, 78, 63(in Chinese).
       

    19. [19]

      Umeyama, D.; Horike, S.; Inukai, M.; Itakura, T.; Kitagawa, S. J. Am. Chem. Soc. 2012, 134, 12780.
       

    20. [20]

      Liu, M.; Chen, L.; Lewis, S.; Chong, S. Y.; Little, M. A.; Hasell, T.; Aldous, I. M.; Brown, C. M.; Smith, M. W.; Morrison, C. A.; Hardwick, L. J.; Cooper, A. I. Nat. Commun. 2016, 7, 12750.  doi: 10.1038/ncomms12750

    21. [21]

      Zhang, K.; Xie, X.; Li, H.; Gao, J.; Nie, L.; Pan, Y.; Xie, J.; Tian, D.; Liu, W.; Fan, Q. Adv. Mater. 2017, 29, 1701804.  doi: 10.1002/adma.201701804

    22. [22]

      Wu, L.; Yang, Y.; Ye, Y.; Yu, Z.; Song, Z.; Chen, S.; Chen, L.; Zhang, Z.; Xiang, S. ACS Appl. Energy Mater. 2018, 1, 5068.  doi: 10.1021/acsaem.8b01102

    23. [23]

      Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese).
       

    24. [24]

      Yang, F.; Huang, H.; Wang, X.; Li, F.; Gong, Y.; Zhong, C.; Li, J.-R. Cryst. Growth Des. 2015, 15, 5827.  doi: 10.1021/acs.cgd.5b01190

    25. [25]

      Losch, P.; Joshi, H. R.; Vozniuk, O.; Grünert, A.; Ochoa-Hernández, C.; Jabraoui, H.; Badawi, M.; Schmidt, W. J. Am. Chem. Soc. 2018, 140, 17790.  doi: 10.1021/jacs.8b11588

    26. [26]

      Sun, Z.; Yu, S.; Zhao, L.; Wang, J.; Li, Z.; Li, G. Chem.-Eur. J. 2018, 24, 10829.  doi: 10.1002/chem.201801844

    27. [27]

      Yamada, T.; Sadakiyo, M.; Kitagawa, H. J. Am. Chem. Soc. 2009, 131, 3144.  doi: 10.1021/ja808681m

    28. [28]

      Yang, F.; Xu, G.; Dou, Y.; Wang, B.; Zhang, H.; Wu, H.; Zhou, W.; Li, J.-R.; Chen, B. Nat. Energy 2017, 2, 877.  doi: 10.1038/s41560-017-0018-7

    29. [29]

      Tang, Q.; Yang, Y.-L.; Zhang, N.; Liu, Z.; Zhang, S.-H.; Tang, F.-S.; Hu, J.-Y.; Zheng, Y. Z.; Liang, F. P. Inorg. Chem. 2018, 57, 9020.  doi: 10.1021/acs.inorgchem.8b01023

    30. [30]

      Wu, H.; Yang, F.; Lv, X. L.; Wang, B.; Zhang, Y.-Z.; Zhao, M. J.; Li, J. R. J. Mater. Chem. A 2017, 5, 14525.  doi: 10.1039/C7TA03917D

    31. [31]

      Feng, L.; Wang, H. S.; Xu, H. L.; Huang, W. T.; Zeng, T. Y.; Cheng, Q. R.; Pan, Z. Q.; Zhou, H. Chem. Commun. 2019, 55, 1762.  doi: 10.1039/C8CC08706G

    32. [32]

      Zhang, F.-M.; Dong, L.-Z.; Qin, J.-S.; Guan, W.; Liu, J.; Li, S.-L.; Lu, M.; Lan, Y. Q.; Su, Z. M.; Zhou, H. C. J. Am. Chem. Soc. 2017, 139, 6183.  doi: 10.1021/jacs.7b01559

    33. [33]

      Horike, S.; Chen, W.; Itakura, T.; Inukai, M.; Umeyama, D.; Asakura, H.; Kitagawa, S. Chem. Commun. 2014, 50, 10241.  doi: 10.1039/C4CC04370G

    34. [34]

      Liu, L.; Yao, Z.; Ye, Y.; Liu, C.; Lin, Q.; Chen, S.; Xiang, S.; Zhang, Z. ACS Appl. Mater. Interfaces 2019, 11, 16490.  doi: 10.1021/acsami.8b22327

    35. [35]

      Liu, R.; Zhao, L.; Yu, S.; Liang, X.; Li, Z.; Li, G. Inorg. Chem. 2018, 57, 11560.  doi: 10.1021/acs.inorgchem.8b01606

    36. [36]

      Chen, H.; Han, S. Y.; Liu, R. H.; Chen, T. F.; Bi, K. L.; Liang, J. B.; Deng, Y. H.; Wan, C. Q. J. Power Sources 2018, 376, 168.  doi: 10.1016/j.jpowsour.2017.11.089

    37. [37]

      Meng, X.; Wei, M.-J.; Wang, H. N.; Zang, H. Y.; Zhou, Z. Y. Dalton Trans. 2018, 47, 1383.  doi: 10.1039/C7DT03932H

    38. [38]

      Gui, D.; Dai, X.; Tao, Z.; Zheng, T.; Wang, X.; Silver, M. A.; Shu, J.; Chen, L.; Wang, Y.; Zhang, T. J. Am. Chem. Soc. 2018, 140, 6146.  doi: 10.1021/jacs.8b02598

    39. [39]

      Shigematsu, A.; Yamada, T.; Kitagawa, H. J. Am. Chem. Soc. 2011, 133, 2034.  doi: 10.1021/ja109810w

    40. [40]

      Sarango-Ramírez, M. K.; Lim, D.-W.; Kolokolov, D. I.; Khudozhitkov, A. E.; Stepanov, A. G.; Kitagawa, H. J. Am. Chem. Soc. 2020, 142, 6861.  doi: 10.1021/jacs.0c00303

    41. [41]

      Bao, S. S.; Shimizu, G. K.; Zheng, L. M. Coord. Chem. Rev. 2019, 378, 577.  doi: 10.1016/j.ccr.2017.11.029

    42. [42]

      Taylor, J. M.; Mah, R. K.; Moudrakovski, I. L.; Ratcliffe, C. I.; Vaidhyanathan, R.; Shimizu, G. K. H. J. Am. Chem. Soc. 2010, 132, 14055.  doi: 10.1021/ja107035w

    43. [43]

      Taylor, J. M.; Dawson, K. W.; Shimizu, G. K. H. J. Am. Chem. Soc. 2013, 135, 1193.  doi: 10.1021/ja310435e

    44. [44]

      Ramaswamy, P.; Wong, N. E.; Gelfand, B. S.; Shimizu, G. K. H. J. Am. Chem. Soc. 2015, 137, 7640.  doi: 10.1021/jacs.5b04399

    45. [45]

      Luo, Y. H.; Yi, L. Q.; Lu, J. N.; Dong, L.-Z.; Lan, Y. Q. CrystEngComm 2018, 20, 6077.  doi: 10.1039/C8CE00693H

    46. [46]

      Li, X. M.; Dong, L. Z.; Li, S. L.; Xu, G.; Liu, J.; Zhang, F. M.; Lu, L. S.; Lan, Y. Q. ACS Energy Lett. 2017, 2, 2313.  doi: 10.1021/acsenergylett.7b00560

    47. [47]

      Li, R.; Wang, S. H.; Chen, X. X.; Lu, J.; Fu, Z. H.; Li, Y.; Xu, G.; Zheng, F. K.; Guo, G. C. Chem. Mater. 2017, 29, 2321.  doi: 10.1021/acs.chemmater.6b05497

    48. [48]

      Nagarkar, S. S.; Unni, S. M.; Sharma, A.; Kurungot, S.; Ghosh, S. K. Angew. Chem. 2014, 126, 2676.  doi: 10.1002/ange.201309077

    49. [49]

      Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. H. Nat. Chem. 2009, 1, 705.  doi: 10.1038/nchem.402

    50. [50]

      Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. Nat. Mater. 2009, 8, 831.  doi: 10.1038/nmat2526

    51. [51]

      Ye, Y.; Guo, W.; Wang, L.; Li, Z.; Song, Z.; Chen, J.; Zhang, Z.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2017, 139, 15604.  doi: 10.1021/jacs.7b09163

    52. [52]

      Sun, X. L.; Deng, W. H.; Chen, H.; Han, H. L.; Taylor, J. M.; Wan, C. Q.; Xu, G. Chem.-Eur. J. 2017, 23, 1248.  doi: 10.1002/chem.201605215

    53. [53]

      Hermes, S.; Schrder, F.; Chelmowski, R.; Wll, C.; Fischer, R. A. J. Am. Chem. Soc. 2005, 127, 13744.  doi: 10.1021/ja053523l

    54. [54]

      Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H. J. Am. Chem. Soc. 2013, 135, 7438.  doi: 10.1021/ja402727d

    55. [55]

      Kim, S.; Wang, H.; Lee, Y. M. Angew. Chem. Int. Ed. 2019, 58, 17512.  doi: 10.1002/anie.201814349

    56. [56]

      Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Angew. Chem. Int. Ed. 2017, 56, 9292.  doi: 10.1002/anie.201701109

    57. [57]

      Niluroutu, N.; Pichaimuthu, K.; Sarmah, S.; Dhanasekaran, P.; Shukla, A.; Unni, S. M.; Bhat, S. D. New J. Chem. 2018, 42, 16758.  doi: 10.1039/C8NJ03459A

    58. [58]

      Guo, Y.; Jiang, Z.; Ying, W.; Chen, L.; Liu, Y.; Wang, X.; Jiang, Z.-J.; Chen, B.; Peng, X. Adv. Mater. 2018, 30, 1705155.  doi: 10.1002/adma.201705155

    59. [59]

      Cai, Y. Y.; Yang, Q.; Zhu, Z. Y.; Sun, Q. H.; Zhu, A. M.; Zhang, Q. G.; Liu, Q. L. J. Membr. Sci. 2019, 590, 117277.  doi: 10.1016/j.memsci.2019.117277

    60. [60]

      Han, R.; Wu, P. ACS Appl. Mater. Interfaces 2018, 10, 18351.  doi: 10.1021/acsami.8b04311

    61. [61]

      Wang, L.; Deng, N.; Wang, G.; Ju, J.; Cheng, B.; Kang, W. ACS Appl. Mater. Interfaces 2019, 11, 39979.  doi: 10.1021/acsami.9b13496

    62. [62]

      Rao, Z.; Feng, K.; Tang, B.; Wu, P. J. Membr. Sci. 2017, 533, 160.  doi: 10.1016/j.memsci.2017.03.031

    63. [63]

      Bai, Z.; Liu, S.; Chen, P.; Cheng, G.; Wu, G.; Liu, Y. Nanotechnology 2020, 31, 125702.  doi: 10.1088/1361-6528/ab5d5e

    64. [64]

      Bai, Z.; Liu, S.; Cheng, G.; Wu, G.; Liu, Y. Micropor. Mesopor. Mat. 2020, 292, 109763.  doi: 10.1016/j.micromeso.2019.109763

    65. [65]

      Yang, L.; Tang, B.; Wu, P. J. Mater. Chem. A 2015, 3, 15838.  doi: 10.1039/C5TA03507D

    66. [66]

      Ru, C.; Gu, Y.; Na, H.; Li, H.; Zhao, C. ACS Appl. Mater. Interfaces 2019, 11, 31899.  doi: 10.1021/acsami.9b09183

    67. [67]

      Zhang, F.; Zhang, T.; Zou, X.; Liang, X.; Zhu, G.; Qu, F. Solid State Ionics 2017, 301, 125.  doi: 10.1016/j.ssi.2017.01.022

    68. [68]

      Rao, Z.; Tang, B.; Wu, P. ACS Appl. Mater. Interfaces 2017, 9, 22597.  doi: 10.1021/acsami.7b05969

    69. [69]

      Dong, X.-Y.; Wang, J.-H.; Liu, S.-S.; Han, Z.; Tang, Q.-J.; Li, F.-F.; Zang, S.-Q. ACS Appl. Mater. Interfaces 2018, 10, 38209.  doi: 10.1021/acsami.8b12846

    70. [70]

      Adams, R.; Carson, C.; Ward, J.; Tannenbaum, R.; Koros, W. Micropor. Mesopor. Mat. 2010, 131, 13.  doi: 10.1016/j.micromeso.2009.11.035

    71. [71]

      Sabetghadam, A.; Liu, X.; Gottmer, S.; Chu, L.; Gascon, J.; Kapteijn, F. J. Membr. Sci. 2019, 570-571, 226.

    72. [72]

      Liu, Y.; Liu, G.; Zhang, C.; Qiu, W.; Yi, S.; Chernikova, V.; Chen, Z.; Belmabkhout, Y.; Shekhah, O.; Eddaoudi, M.; Koros, W. Adv. Sci. 2018, 5, 1800982.  doi: 10.1002/advs.201800982

    73. [73]

      Cao, L.; Tao, K.; Huang, A.; Kong, C.; Chen, L. Chem. Commun. 2013, 49, 8513.  doi: 10.1039/c3cc44530e

    74. [74]

      Anjum, M. W.; Vermoortele, F.; Khan, A. L.; Bueken, B.; De Vos, D. E.; Vankelecom, I. F. J. ACS Appl. Mater. Interfaces 2015, 7, 25193.  doi: 10.1021/acsami.5b08964

    75. [75]

      Ordoez, M. J. C.; Balkus, K. J.; Ferraris, J. P.; Musselman, I. H. J. Membr. Sci. 2010, 361, 28.  doi: 10.1016/j.memsci.2010.06.017

    76. [76]

      Dorosti, F.; Omidkhah, M.; Abedini, R. Chem. Eng. Res. Des. 2014, 92, 2439.  doi: 10.1016/j.cherd.2014.02.018

    77. [77]

      Duan, L.; Wang, Y.; Zhang, Y.; Liu, J. Appl. Surf. Sci. 2015, 355, 436.  doi: 10.1016/j.apsusc.2015.07.127

    78. [78]

      Li, W.; Samarasinghe, S. A. S. C.; Bae, T.-H. J. Ind. Eng. Chem. 2018, 67, 156.  doi: 10.1016/j.jiec.2018.06.026

    79. [79]

      Ru, C.; Li, Z.; Zhao, C.; Duan, Y.; Zhuang, Z.; Bu, F.; Na, H. ACS Appl. Mater. Interfaces 2018, 10, 7963.  doi: 10.1021/acsami.7b17299

    80. [80]

      Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Chem. Commun. 2013, 49, 9449.  doi: 10.1039/c3cc46105j

    81. [81]

      Peng, X.; Ye, L.; Ding, Y.; Yi, L.; Zhang, C.; Wen, Z. Appl. Catal., B 2020, 260, 118152.  doi: 10.1016/j.apcatb.2019.118152

    82. [82]

      Liu, S.; Sang, X.; Wang, L.; Zhang, J.; Song, J.; Han, B. Electrochim. Acta 2017, 257, 243.  doi: 10.1016/j.electacta.2017.10.084

    83. [83]

      Zhang, B.; Cao, Y.; Li, Z.; Wu, H.; Yin, Y.; Cao, L.; He, X.; Jiang, Z. Electrochim. Acta 2017, 240, 186.  doi: 10.1016/j.electacta.2017.04.087

    84. [84]

      Wu, B.; Lin, X.; Ge, L.; Wu, L.; Xu, T. Chem. Commun. 2013, 49, 143.  doi: 10.1039/C2CC37045J

    85. [85]

      Liu, W.; Wang, S.; Xiao, M.; Han, D.; Meng, Y. Chem. Commun. 2012, 48, 3415.  doi: 10.1039/c2cc16952e

    86. [86]

      Liu, X.; Yang, Z.; Zhang, Y.; Li, C.; Dong, J.; Liu, Y.; Cheng, H. Int. J. Hydrogen Energy 2017, 42, 10275.  doi: 10.1016/j.ijhydene.2017.02.128

    87. [87]

      Wu, B.; Pan, J.; Ge, L.; Wu, L.; Wang, H.; Xu, T. Sci. Rep. 2014, 4, 4334.
       

    88. [88]

      Choi, B. G.; Huh, Y. S.; Park, Y. C.; Jung, D. H.; Hong, W. H.; Park, H. Carbon 2012, 50, 5395.  doi: 10.1016/j.carbon.2012.07.025

    89. [89]

      Enotiadis, A.; Angjeli, K.; Baldino, N.; Nicotera, I.; Gournis, D. Small 2012, 8, 3338.  doi: 10.1002/smll.201200609

    90. [90]

      Wu, B. Ph.D. Dissertation, University of Science and Technology of China, Hefei, 2015 (in Chinese).

    91. [91]

      Sun, H.; Tang, B.; Wu, P. ACS Appl. Mater. Interfaces 2017, 9, 26077.  doi: 10.1021/acsami.7b07651

    92. [92]

      Ahmadian-Alam, L.; Mahdavi, H. Renew. Energ. 2018, 126, 630.  doi: 10.1016/j.renene.2018.03.075

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    7. [7]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    8. [8]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    9. [9]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    10. [10]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    13. [13]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    17. [17]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    18. [18]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(133)
  • Abstract views(5595)
  • HTML views(1388)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return