Citation: Zhang Lan, Ma Suqian, Wang Hanbing, Liang Yunhong, Zhang Zhihui. Research Progress of Shape Memory Polymer Deformation Mode[J]. Acta Chimica Sinica, ;2020, 78(9): 865-876. doi: 10.6023/A20060219 shu

Research Progress of Shape Memory Polymer Deformation Mode

  • Corresponding author: Liang Yunhong, liangyunhong@jlu.edu.cn
  • Received Date: 9 June 2020
    Available Online: 30 July 2020

    Fund Project: the National Natural Science Foundation of China 51675223China Postdoctoral Science Foundation 2019M661204the National Natural Science Foundation of China 91848204the National Key Research and Development Program of China 2018YFA0703300Key Scientific and Technological Project of Jilin Province 20180201051GXthe National Key Research and Development Program of China 2018YFC2001300Project supported by the National Key Research and Development Program of China (2018YFB1105100, 2018YFA0703300 and 2018YFC2001300), the National Natural Science Foundation of China (51822504, 51675223 and 91848204), Key Scientific and Technological Project of Jilin Province (20180201051GX), Program for Jilin University Science and Technology Innovative Research Team (2017TD-04), Joint Fund of Ministry of Education for Equipment Pre-research (2018G944J00084) and China Postdoctoral Science Foundation (2019M661204).the National Key Research and Development Program of China 2018YFB1105100Program for Jilin University Science and Technology Innovative Research Team 2017TD-04Joint Fund of Ministry of Education for Equipment Pre-research 2018G944J00084the National Natural Science Foundation of China 51822504

Figures(10)

  • Shape memory polymers are the most widely studied smart deformable materials at present. Due to their low density, large deformation, high stress resistance, various driving methods, good biocompatibility, easier modification and processing, shape memory polymers have become a cutting-edge research in the field of smart materials. Under certain external stimulus (such as temperature, light, electric field, magnetic field, pH, specific ions, enzymes, etc.), shape memory polymers can change their shapes according to pre-designed way and quickly change from temporary shape to permanent shape. Shape memory polymers have shown great application potential in aerospace, biomedicine, bionic engineering, electronic devices, intelligent robots and other fields, which effectively overcome the bottleneck problems in the corresponding fields. In order to make the shape memory polymers more suitable for various fields, not only a simple deformation process from a temporary shape to a permanent shape is needed, the deformation mode should also be improved to adapt the actual situation in practical applications. In this paper, the deformation modes of shape memory polymers are divided into four categories, including the simple dual shape memory deformation mode, the multiple shape memory deformation mode with multiple temporary shapes, the self-folding deformation mode, and the reversible two-way shape memory deformation mode. Multiple shape memory polymers generally have multiple reversible switches or a wide range of temperature switches, which have greater freedom in practical applications. The self-folding structure can spontaneously fold/unfold to the desired shape under stimulation conditions without artificially giving shape, so it has great application prospects in the fields of space systems and self-assembly systems. The reversible shape memory polymer can reversibly convert between permanent and temporary shapes under stimulation conditions, which show great application prospects in the fields of sensors and drivers. The deformation modes are more diversified which can fulfill different requirements in various applications. The deformation mode is an important functional index of shape memory materials. Therefore, from the perspective of different deformation modes of shape memory polymers, this paper reviews the different deformation modes of shape memory polymers and the progress of their related applications, as well as the challenges faced by different deformation modes and their potential research directions.
  • 加载中
    1. [1]

      Song, J. J.; Srivastava, I.; Kowalski, J.; Naguib, H. E. Conference on Behavior and Mechanics of Multifunctional Materials and Composites, San Diego, 2014.
       

    2. [2]

      Halary, J.; Cookson, P.; Stanford, J. L.; Lovell, P. A.; Young, R. J. Adv. Eng. Mater. 2004, 6, 729.  doi: 10.1002/adem.200400061

    3. [3]

      Rapoport, N. Prog. Polym. Sci. 2007, 32, 962.  doi: 10.1016/j.progpolymsci.2007.05.009

    4. [4]

      Schmaljohann, D. Adv. Drug. Deliver. Rev. 2006, 58, 1655.  doi: 10.1016/j.addr.2006.09.020

    5. [5]

      Ionov, L. J. Mater. Chem. 2010, 20, 3382.  doi: 10.1039/b922718k

    6. [6]

      Liu, F.; Urban, M. W. Prog. Polym. Sci. 2010, 35, 3.  doi: 10.1016/j.progpolymsci.2009.10.002

    7. [7]

      Stuart, M. A. C.; Huck, W. T.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M. Nat. Mater. 2010, 9, 101.  doi: 10.1038/nmat2614

    8. [8]

      Roy, D.; Cambre, J. N.; Sumerlin, B. S. Prog. Polym. Sci. 2010, 35, 278.  doi: 10.1016/j.progpolymsci.2009.10.008

    9. [9]

      Meng, H.; Hu, J. L. J. Intel. Mat. Syst. Str. 2010, 21, 859.  doi: 10.1177/1045389X10369718

    10. [10]

      Chen, X.; Chen, Y.; Liu, Y. Chin. J. Chem. 2018, 36, 526.  doi: 10.1002/cjoc.201800063

    11. [11]

      Zhang, D.; Liu, J.; Chen, B.; Wang, J.; Jiang, L. Acta Chim. Sinica 2018, 76, 425(in Chinese).
       

    12. [12]

      Zhang, L.; Qian, M.; Wang, J. Acta Chim. Sinica 2017, 75, 770(in Chinese).
       

    13. [13]

      Guan, X.; Wang, L.; Li, Z.; Liu, M.; Wang, K.; Lin, B.; Yang, X.; Lai, S.; Lei, Z. Acta Chim. Sinica 2019, 77, 1036(in Chinese).
       

    14. [14]

      Bai, C.; Huang, Q.; Xiong, X. Chin. J. Chem. 2020, 38, 494.  doi: 10.1002/cjoc.201900458

    15. [15]

      Murphy, E. B.; Wudl, F. Prog. Polym. Sci. 2010, 35, 223.  doi: 10.1016/j.progpolymsci.2009.10.006

    16. [16]

      Zhang, W.; Zhang, F. H.; Lan, X.; Leng, J. S.; Wu, A. S.; Bryson, T. M.; Cotton, C.; Gu, B. H.; Sun, B. Z.; Chou, T. W. Compos. Sci. Technol. 2018, 160, 224.  doi: 10.1016/j.compscitech.2018.03.037

    17. [17]

      Liu, Y. J.; Du, H. Y.; Liu, L. W.; Leng, J. S. Smart Mater. Struct. 2014, 23, 023001.  doi: 10.1088/0964-1726/23/2/023001

    18. [18]

      Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S. Prog. Polym. Sci. 2015, 49, 3.
       

    19. [19]

      Li, J. J.; Xie, T. Macromolecules 2011, 44, 175.  doi: 10.1021/ma102279y

    20. [20]

      Small, W.; Wilson, T. S.; Benett, W. J.; Loge, J. M.; Maitland, D. J. Opt. Express. 2005, 13, 8204.  doi: 10.1364/OPEX.13.008204

    21. [21]

      Gunes, I. S.; Jimenez, G. A.; Jana, S. C. Carbon 2009, 47, 981.  doi: 10.1016/j.carbon.2008.11.053

    22. [22]

      Lu, H. B.; Liu, Y. J.; Gou, J. H.; Leng, J. S.; Du, S. Y. Int. J. Smart Nano Mater. 2010, 1, 2.  doi: 10.1080/19475411003612749

    23. [23]

      Yakacki, C. M.; Satarkar, N. S.; Gall, K.; Likos, R.; Hilt, J. Z. J. Appl. Polym. Sci. 2009, 112, 3166.  doi: 10.1002/app.29845

    24. [24]

      Huang, W. M.; Yang, B.; An, L.; Li, C.; Chan, Y. S. Appl. Phys. Lett. 2005, 86, 114105.  doi: 10.1063/1.1880448

    25. [25]

      Chen, S. J.; Hu, J. L.; Zhuo, H. T. J. Mater. Sci. 2011, 46, 6581.  doi: 10.1007/s10853-011-5606-5

    26. [26]

      Wei, K.; Zhu, G. M.; Tang, Y. S.; Tian, G. M.; Xie, J. Q. Smart Mater. Struct. 2012, 21, 055022.  doi: 10.1088/0964-1726/21/5/055022

    27. [27]

      Xie, T.; Xiao, X.; Li, J.; Wang, R. Adv. Mater. 2010, 22, 4390.  doi: 10.1002/adma.201002825

    28. [28]

      Bodaghi, M.; Damanpack, A. R.; Liao, W. H. Mater. Des. 2017, 135, 26.  doi: 10.1016/j.matdes.2017.08.069

    29. [29]

      Hu, J. L.; Mondal, S. Polym. Int. 2005, 54, 764.  doi: 10.1002/pi.1753

    30. [30]

      Hu, J. L.; Yang, Z.; Yeung, L.; Ji, F.; Liu, Y. Polym. Int. 2005, 54, 854.  doi: 10.1002/pi.1785

    31. [31]

      Liu, C.; Qin, H.; Mather, P. T. J. Mater. Chem. 2007, 17, 1543.  doi: 10.1039/b615954k

    32. [32]

      Beloshenko, V. A.; Varyukhin, V. N.; Voznyak, Y. V. Russ. Chem. Rev. 2005, 74, 265.  doi: 10.1070/RC2005v074n03ABEH000876

    33. [33]

      Zhang, L.; Lin, Z; Zhou, Q.; Ma, S.; Liang, Y.; Zhang, Z. Front. Mater. Sci. 2020, 14, 177.  doi: 10.1007/s11706-020-0502-z

    34. [34]

      Zhang, S.; Yu, Z.; Govender, T.; Luo, H.; Li, B. Polym. 2008, 49, 3205.  doi: 10.1016/j.polymer.2008.05.030

    35. [35]

      Yu, Z.; Liu, Y.; Fan, M.; Meng, X.; Li, B.; Zhang, S. J. Polym. Sci. Pol. Phys. 2010, 48, 951.  doi: 10.1002/polb.21982

    36. [36]

      Voit, W.; Ware, T.; Dasari, R. R.; Smith, P.; Danz, L.; Simon, D.; Barlow, S.; Marder, S. R.; Gall, K. Adv. Funct. Mater. 2010, 20, 162.  doi: 10.1002/adfm.200901409

    37. [37]

      Nguyen, T. D.; Yakacki, C. M.; Brahmbhatt, P. D.; Chambers, M. L. Adv. Mater. 2010, 22, 3411.  doi: 10.1002/adma.200904119

    38. [38]

      Ahn, S. K.; Deshmukh, P.; Kasi, R. M. Macromolecules 2010, 43, 7330.  doi: 10.1021/ma101145r

    39. [39]

      Zhang, J.; Niu, Y.; Huang, C.; Xiao, L.; Chen, Z.; Yang, K.; Wang, Y. Polym. Chem-UK. 2012, 3, 1390.  doi: 10.1039/c2py20028g

    40. [40]

      Capadona, J. R.; Shanmuganathan, K.; Tyler, D. J.; Rowan, S. J.; Weder, C. Science 2008, 319, 1370.  doi: 10.1126/science.1153307

    41. [41]

      Bao, M.; Lou, X.; Zhou, Q.; Dong, W.; Yuan, H.; Zhang, Y. ACS Appl. Mater. Interfaces 2014, 6, 2611.  doi: 10.1021/am405101k

    42. [42]

      Ren, L.; Li, B.; Song, Z.; Liu, Q.; Ren, L.; Zhou, X. J. Mater. Sci. 2019, 54, 6542.  doi: 10.1007/s10853-019-03344-8

    43. [43]

      Behl, M.; Razzaq, M. Y.; Lendlein, A. Adv. Mater. 2010, 22, 3388.  doi: 10.1002/adma.200904447

    44. [44]

      Leonardi, A. B.; Fasce, L. A.; Zucchi, I. A.; Hoppe, C. E.; Soule, E. R.; Perez, C. J.; Williams, R. J. J. Eur. Polym. J. 2011, 47, 362.  doi: 10.1016/j.eurpolymj.2010.12.009

    45. [45]

      Yu, K.; Ritchie, A.; Mao, Y.; Dunn, M. L.; Qi, H. J. Procedia. Iutam. 2015, 12, 193.  doi: 10.1016/j.piutam.2014.12.021

    46. [46]

      Invernizzi, M.; Turri, S.; Levi, M.; Suriano, R. Eur. Polym. J. 2018, 101, 169.  doi: 10.1016/j.eurpolymj.2018.02.023

    47. [47]

      Mu, T.; Liu, L.; Lan, X.; Liu, Y.; Leng, J. Compos. Sci. Technol. 2018, 160, 169.  doi: 10.1016/j.compscitech.2018.03.018

    48. [48]

      Leng, J.; Liu, L.; Lv, H.; Liu, V. JEC Compos. 2012, 49, 56.
       

    49. [49]

      Lendlein, A.; Behl, M.; Hiebl, B.; Wischke, C. Expet Rev. Med. Dev. 2010, 7, 357.  doi: 10.1586/erd.10.8

    50. [50]

      Wache, H. M.; Tartakowska, D. J.; Hentrich, A.; Wagner, M. H. J. Mater. Sci. Mater. Med. 2003, 14, 109.
       

    51. [51]

      Miao, S.; Castro, N.; Nowicki, M.; Xia, L.; Cui, H. T.; Zhou, X.; Zhu, W.; Lee, S. J.; Sarkar, K.; Vozzi, G.; Tabata, Y.; Fisher, J.; Zhang, L. G. Mater. Today 2017, 20, 577.  doi: 10.1016/j.mattod.2017.06.005

    52. [52]

      Lee, J. H.; Hinchet, R.; Kim, S. K.; Kim, S.; Kim, S. W. Energy Environ. Sci. 2015, 8, 3605.  doi: 10.1039/C5EE02711J

    53. [53]

      Ge, Q.; Qi, H. J.; Dunn, M. L. Appl. Phys. Lett. 2013, 103, 1.
       

    54. [54]

      Felton, S.; Tolley, M.; Demaine, E.; Rus, D.; Wood, R. Science 2014, 345, 644.  doi: 10.1126/science.1252610

    55. [55]

      Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. Adv. Mater. 2015, 28, 4449.
       

    56. [56]

      Meng, H.; Li, G. Polymer 2013, 54, 2199.  doi: 10.1016/j.polymer.2013.02.023

    57. [57]

      Liu, T.; Zhou, T.; Yao, Y.; Zhang, F.; Liu, L.; Liu, Y.; Leng, J. Compos. Part A-Appl. Sci. Manufac. 2017, 100, 20.  doi: 10.1016/j.compositesa.2017.04.022

    58. [58]

      Hardy, J. G.; Palma, M.; Wind, S. J.; Biggs, M. J. Adv. Mater. 2016, 28, 5717.  doi: 10.1002/adma.201505417

    59. [59]

      Yang, Y.; Chen, Y.; Wei, Y.; Li, Y. Int. J. Adv. Manuf. Technol. 2016, 84, 2079.  doi: 10.1007/s00170-015-7843-2

    60. [60]

      Ge, Q.; Sakhaei, A. H.; Lee, H.; Dunn, C. K.; Fang, N. X.; Dunn, M. L. Sci. Rep. 2016, 6, 31110.  doi: 10.1038/srep31110

    61. [61]

      Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. Adv. Mater. 2016, 28, 4166.  doi: 10.1002/adma.201670148

    62. [62]

      Senatov, F. S.; Niaza, K. V.; Zadorozhnyy, M. Y.; Maksimkin, A. V.; Kaloshkin, S. D.; Estrin, Y. Z. J. Mech. Behav. Biomed. Mater. 2016, 57, 139.  doi: 10.1016/j.jmbbm.2015.11.036

    63. [63]

      Miao, S.; Zhu, W.; Castro, N. J.; Leng, J.; Zhang, L. G. Tissue Eng. Part C-Methods 2016, 22, 952.  doi: 10.1089/ten.tec.2015.0542

    64. [64]

      Wei, H.; Zhang, Q.; Yao, Y.; Liu, L.; Liu, Y.; Leng, J. ACS Appl. Mater. Interfaces 2017, 9, 876.  doi: 10.1021/acsami.6b12824

    65. [65]

      Zarek, M.; Mansour, N.; Shapira, S.; Cohn, D. Macromol. Rapid Commun. 2017, 38, 1600628.  doi: 10.1002/marc.201600628

    66. [66]

      Li, G.; King, A.; Xu, T.; Huang, X. J. Mater. Civil. Eng. 2013, 25, 393.  doi: 10.1061/(ASCE)MT.1943-5533.0000572

    67. [67]

      Ahn, S. K.; Kasi, R. M. Adv. Funct. Mater. 2011, 21, 4543.  doi: 10.1002/adfm.201101369

    68. [68]

      Luo, X.; Mather, P. T. Adv. Funct. Mater. 2010, 20, 2649.  doi: 10.1002/adfm.201000052

    69. [69]

      Wu, J.; Yuan, C.; Ding, Z.; Isakov, M.; Mao, Y.; Wang, T.; Dunn, M. L.; Qi, H. J. Sci. Rep-UK. 2016, 6, 24224.  doi: 10.1038/srep24224

    70. [70]

      Xie, T.; Xiao, X.; Cheng, Y. Macromol. Rapid Commun. 2009, 30, 1823.  doi: 10.1002/marc.200900409

    71. [71]

      Cuevas, J. M.; Rubio, R.; German, L.; Laza, J. M.; Vilas, J. L.; Rodriguez, M.; Leon, L. M. Soft Matter 2012, 8, 4928.  doi: 10.1039/c2sm07481h

    72. [72]

      Bellin, I.; Kelch, S.; Lendlein, A. J. Mater. Chem. 2007, 17, 2885.  doi: 10.1039/b702524f

    73. [73]

      Kolesov, I. S.; Radusch, H. J. Express. Polym. Lett. 2008, 2, 461.  doi: 10.3144/expresspolymlett.2008.56

    74. [74]

      Li, J.; Liu, T.; Xia, S.; Pan, Y.; Zheng, Z.; Ding, X.; Peng, Y. J. Mater. Chem. 2011, 21, 12213.  doi: 10.1039/c1jm12496j

    75. [75]

      Kumar, U. N.; Kratz, K.; Wagermaier, W.; Behl, M.; Lendlein, A. J. Mater. Chem. 2010, 20, 3404.  doi: 10.1039/b923000a

    76. [76]

      Peraza-Hernandez, E. A.; Hartl, D. J.; Malak, R. J.; Lagoudas, D. C. Smart Mater. Struct. 2014, 23, 094001.  doi: 10.1088/0964-1726/23/9/094001

    77. [77]

      Zhang, Y.; Zhang, F.; Yan, Z.; Ma, Q.; Li, X.; Huang, Y. Nat. Rev. Mater. 2017, 2, 17029.  doi: 10.1038/natrevmats.2017.29

    78. [78]

      van Manen, T.; Janbaz, S.; Zadpoor, A. A. Mater. Horiz. 2017, 4, 1064.  doi: 10.1039/C7MH00269F

    79. [79]

      Zhang, Q.; Yan, D.; Zhang, K.; Hu, G. Sci. Rep. 2015, 5, 8936.  doi: 10.1038/srep08936

    80. [80]

      Liu, Y.; Boyles, J. K.; Genzer, J.; Dickey, M. D. Soft Matter 2012, 8, 1764.  doi: 10.1039/C1SM06564E

    81. [81]

      Felton, S. M.; Becker, K. P.; Aukes, D. M.; Wood, R. J. J. Micromech. Microeng. 2015, 25, 085004.  doi: 10.1088/0960-1317/25/8/085004

    82. [82]

      Mao, Y.; Yu, K.; Isakov, M. S.; Wu, J.; Qi, H. J. Sci. Rep. 2015, 5, 13616.  doi: 10.1038/srep13616

    83. [83]

      Tolley, M. T.; Felton, S. M.; Miyashita, S.; Aukes, D.; Rus, D.; Wood, R. J. Smart Mater. Struct. 2014, 23, 094006.  doi: 10.1088/0964-1726/23/9/094006

    84. [84]

      Felton, S. M.; Tolley, M. T.; Shin, B.; Onal, C. D.; Demaine, E. D.; Rus, D.; Wood, R. J. Soft Matter 2013, 9, 7699.
       

    85. [85]

      Zakharchenko, S.; Puretskiy, N.; Stoychev, G.; Stamm, M.; Ionov, L. Soft Matter 2010, 6, 2633.  doi: 10.1039/c0sm00088d

    86. [86]

      Stoychev, G.; Puretskiy, N.; Ionov, L. Soft Matter 2011, 7, 3277.  doi: 10.1039/c1sm05109a

    87. [87]

      Zhou, J.; Sheiko, S. S. J. Polym. Sci. Phys. 2016, 54, 1365.  doi: 10.1002/polb.24014

    88. [88]

      Behl, M.; Kratz, K.; Noechel, U.; Sauter, T.; Lendlein, A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12555.  doi: 10.1073/pnas.1301895110

    89. [89]

      Westbrook, K. K.; Mather, P. T.; Parakh, V.; Dunn, M. L.; Ge, Q.; Lee, B. M.; Qi, H. J. Smart Mater. Struct. 2011, 20, 065010.  doi: 10.1088/0964-1726/20/6/065010

    90. [90]

      Pyo, Y.; Kang, M.; Jang, J. Y.; Park, Y.; Son, Y. H.; Choi, M.; Ha, J. W.; Chang, Y. W.; Lee, C. S. Sensor. Actuat. A-Phys. 2018, 283, 187.  doi: 10.1016/j.sna.2018.08.049

    91. [91]

      Mao, Y.; Ding, Z.; Yuan, C.; Ai, S.; Isakov, M.; Wu, J.; Wang, T.; Dunn, M. L.; Qi, H. J. Sci. Rep-UK. 2016, 6, 24761.  doi: 10.1038/srep24761

    92. [92]

      Ze, Q.; Kuang, X.; Wu, S.; Wong, J.; Montgomery, S. M.; Zhang, R.; Kovitz, J. M.; Yang, F.; Qi, H. J.; Zhao, R. Adv. Mater. 2019, 32, 1906657.
       

    93. [93]

      Wang, L.; Razzaq, M. Y.; Rudolph, T.; Heuchel, M.; Nochel, U.; Mansfeld, U.; Jiang, Y.; Gould, O. E. C.; Behl, M.; Kratz, K.; Lendlein, A. Mater. Horiz. 2018, 5, 861.  doi: 10.1039/C8MH00266E

    94. [94]

      Behl, M.; Kratz, K.; Zotzmann, J.; Noechel, U.; Lendlein, A. Adv. Mater. 2013, 25, 4466.  doi: 10.1002/adma.201300880

    95. [95]

      Gao, Y.; Liu, W.; Zhu, S. ACS Appl. Mater. Interfaces 2017, 9, 4882.  doi: 10.1021/acsami.6b14728

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(76)
  • Abstract views(4535)
  • HTML views(1237)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return