Citation: Ma Minghao, Xu Ming, Liu Sijin. Surface Chemical Modifications of Graphene Oxide and Interaction Mechanisms at the Nano-Bio Interface[J]. Acta Chimica Sinica, ;2020, 78(9): 877-887. doi: 10.6023/A20060216 shu

Surface Chemical Modifications of Graphene Oxide and Interaction Mechanisms at the Nano-Bio Interface

  • Corresponding author: Xu Ming, mingxu@rcees.ac.cn
  • Received Date: 8 June 2020
    Available Online: 3 August 2020

    Fund Project: the National Natural Science Foundation of China 21920102007Project supported by the National Natural Science Foundation of China (Nos. 21922611, 21637004, 21920102007) and the Youth Innovation Promotion Association CAS (No. 2019042).the National Natural Science Foundation of China  21637004the National Natural Science Foundation of China 21922611the Youth Innovation Promotion Association CAS 2019042

Figures(10)

  • Due to the unique physicochemical properties, graphene oxide has been widely applied in material chemistry, biomedical science and life science. However, here is still a great challenge to maximize the advantages of graphene oxide and overcome the deleterious effects caused by its inherent properties. For a better understanding of current status in this research field, recent progress in surface chemical modifications of graphene oxide and interaction mechanisms at the nano-bio interface has been comprehensively reviewed. First, the physicochemical properties of graphene oxide and the representative strategies of surface chemical modifications will be briefly introduced, including oxidation and reduction, carboxylation, amination, small organic molecule modification, polymer modification, peptide/protein modification, nucleic acid modification and nanoparticle modification, as well as their potential roles in mediating the graphene oxide-resulted biological effects. Following, we will present the primary interaction mechanisms of pristine and surface-modified graphene oxide at the nano-bio interface, including the formation of protein corona, cell membrane damage, membrane receptor interaction and oxidative stress. Finally, the knowledge gaps and future challenges in this research field will be detailedly discussed.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  doi: 10.1126/science.1102896

    2. [2]

      Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.  doi: 10.1021/cr900070d

    3. [3]

      Moon, P.; Koshino, M. Phys. Rev. B 2012, 85, 195458.  doi: 10.1103/PhysRevB.85.195458

    4. [4]

      Bolotin, K.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146, 351.  doi: 10.1016/j.ssc.2008.02.024

    5. [5]

      Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Phys. Rev. Lett. 2008, 100, 016602.  doi: 10.1103/PhysRevLett.100.016602

    6. [6]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.  doi: 10.1126/science.1157996

    7. [7]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.  doi: 10.1021/nl0731872

    8. [8]

      Yoon, H. J.; Shanker, A.; Wang, Y.; Kozminsky, M.; Jin, Q.; Palanisamy, N.; Burness, M. L.; Azizi, E.; Simeone, D. M.; Wicha, M. S. Adv. Mater. 2016, 28, 4891.  doi: 10.1002/adma.201600658

    9. [9]

      Li, J.; Lyv, Z.; Li, Y.; Liu, H.; Wang, J.; Zhan, W.; Chen, H.; Chen, H.; Li, X. Biomaterials 2015, 51, 12.  doi: 10.1016/j.biomaterials.2015.01.074

    10. [10]

      Zou, X.; Zhang, L.; Wang, Z.; Luo, Y. J. Am. Chem. Soc. 2016, 138, 2064.  doi: 10.1021/jacs.5b11411

    11. [11]

      Ye, S.; Shao, K.; Li, Z.; Guo, N.; Zuo, Y.; Li, Q.; Lu, Z.; Chen, L.; He, Q.; Han, H. ACS Appl. Mater. Interfaces 2015, 7, 21571.  doi: 10.1021/acsami.5b06876

    12. [12]

      Palmieri, V.; Papi, M. Nano Today 2020, 33, 100883.  doi: 10.1016/j.nantod.2020.100883

    13. [13]

      Romeroaburto, R.; Narayanan, T. N.; Nagaoka, Y.; Hasumura, T.; Mitcham, T.; Fukuda, T.; Cox, P.; Bouchard, R. R.; Maekawa, T.; Kumar, D. S. Adv. Mater. 2013, 25, 5632.  doi: 10.1002/adma201301804

    14. [14]

      Yang, K.; Feng, L.; Shi, X.; Liu, Z. Chem. Soc. Rev. 2013, 42, 530.  doi: 10.1039/C2CS35342C

    15. [15]

      Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chem. Rev. 2016, 116, 5464.  doi: 10.1021/acs.chemrev.5b00620

    16. [16]

      Lin, Y.; Zhang, Y.; Li, J.; Kong, H.; Yan, Q.; Zhang, J.; Li, W.; Ren, N.; Cui, Y.; Zhang, T.; Cai, X.; Li, Q.; Li, A.; Shi, J.; Wang, L.; Zhu, Y.; Fan, C. Nano Today 2020, 35, 100922.  doi: 10.1016/j.nantod.2020.100922

    17. [17]

      Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228.  doi: 10.1039/B917103G

    18. [18]

      Wick, P.; Louwgaume, A. E.; Kucki, M.; Krug, H. F.; Kostarelos, K.; Fadeel, B.; Dawson, K. A.; Salvati, A.; Vazquez, E.; Ballerini, L. Angew. Chem. 2014, 53, 7714.  doi: 10.1002/anie.201403335

    19. [19]

      Zheng, Q.; Gudarzi, M. M.; Wang, S.; Geng, Y.; Li, Z.; Kim, J. K. Carbon 2011, 49, 2905.  doi: 10.1016/j.carbon.2011.02.064

    20. [20]

      Azevedo, J.; Costacoquelard, C.; Jegou, P.; Yu, T.; Benattar, J. J. Phys. Chem. C 2011, 115, 14678.  doi: 10.1021/jp205020r

    21. [21]

      Katano, S.; Wei, T.; Sasajima, T.; Kasama, R.; Uehara, Y. Phys. Chem. Chem. Phys. 2018, 20, 17977.  doi: 10.1039/C8CP01168K

    22. [22]

      Paredes, J. I.; Villarrodil, S.; Solisfernandez, P.; Martinezalonso, A.; Tascon, J. M. D. Langmuir 2009, 25, 5957.  doi: 10.1021/la804216z

    23. [23]

      Zheng, Q.; Li, Z.; Yang, J.; Kim, J. K. Prog. Mater Sci. 2014, 64, 200.  doi: 10.1016/j.pmatsci.2014.03.004

    24. [24]

      Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906.  doi: 10.1002/adma.201001068

    25. [25]

      Tu, Q.; Pang, L.; Chen, Y.; Zhang, Y.; Zhang, R.; Lu, B.; Wang, J. Analyst 2014, 139, 105.  doi: 10.1039/C3AN01796F

    26. [26]

      Mei, Q.; Zhang, K.; Guan, G.; Liu, B.; Wang, S.; Zhang, Z. Chem. Commun. 2010, 46, 7319.  doi: 10.1039/c0cc02374d

    27. [27]

      Paredes, J. I.; Villarrodil, S.; Martinezalonso, A.; Tascon, J. M. D. Langmuir 2008, 24, 10560.  doi: 10.1021/la801744a

    28. [28]

      Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 10876.  doi: 10.1021/ja803688x

    29. [29]

      Shi, L.; Pang, H. W.; Wang, X. X.; Zhang, P.; Yu, S. J. Acta Chim. Sinica 2019, 77, 1177(in Chinese).
       

    30. [30]

      Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Chem. Mater. 2009, 21, 2950.  doi: 10.1021/cm9006603

    31. [31]

      Majeed, W.; Bourdo, S.; Petibone, D. M.; Saini, V.; Vang, K. B.; Nima, Z. A.; Alghazali, K. M.; Darrigues, E.; Ghosh, A.; Watanabe, F. J. Appl. Toxicol. 2017, 37, 462.  doi: 10.1002/jat.3379

    32. [32]

      Pareek, S.; Jain, D.; Shrivastava, R.; Dam, S.; Hussain, S.; Behera, D. Mater. Res. Express 2019, 6, 8.
       

    33. [33]

      Leconte, N.; Moser, J.; Ordejon, P.; Tao, H.; Lherbier, A.; Bachtold, A.; Alsina, F.; Torres, C. M. S.; Charlier, J.; Roche, S. ACS Nano. 2010, 4, 4033.  doi: 10.1021/nn100537z

    34. [34]

      Jaworski, S.; Sawosz, E.; Kutwin, M.; Wierzbicki, M.; Hinzmann, M.; Grodzik, M.; Winnicka, A.; Lipinska, L.; Wlodyga, K.; Chwalibog, A. Int. J. Nanomed. 2015, 10, 1585.  doi: 10.2217/nnm.15.20

    35. [35]

      Chng, E. L. K.; Pumera, M. Chem.-Eur. J. 2013, 19, 8227.  doi: 10.1002/chem.201300824

    36. [36]

      Handayani, M.; Ganta, M.; Susilo, D.; Yahya, S.; Sunnardianto, G.; Darsono, N.; Sulistiyono, E.; Setiawan, I.; Lestari, F.; Erryani, A. IOP Conf. Ser.:Mater. Sci. Eng. 2019, 541, 012032.  doi: 10.1088/1757-899X/541/1/012032

    37. [37]

      Pei, S.; Cheng, H. Carbon 2012, 50, 3210.  doi: 10.1016/j.carbon.2011.11.010

    38. [38]

      Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. Nat. Chem. 2009, 1, 403.  doi: 10.1038/nchem.281

    39. [39]

      Lee, Y. K.; Choi, H.; Lee, C.; Lee, H.; Goddeti, K. C.; Moon, S. Y.; Doh, W. H.; Baik, J.; Kim, J.; Choi, J. S. Nanoscale. 2016, 8, 11494.  doi: 10.1039/C6NR03077G

    40. [40]

      Koivistoinen, J.; Sladkova, L.; Aumanen, J.; Koskinen, P.; Roberts, K.; Johansson, A.; Myllyperkio, P.; Pettersson, M. J. Phys. Chem. C 2016, 120, 22330.  doi: 10.1021/acs.jpcc.6b06099

    41. [41]

      Parvez, K.; Wu, Z.; Li, R.; Liu, X.; Graf, R.; Feng, X.; Mullen, K. J. Am. Chem. Soc. 2014, 136, 6083.  doi: 10.1021/ja5017156

    42. [42]

      Hossain, S. T.; Wang, R. Electrochimica Acta 2016, 216, 253.  doi: 10.1016/j.electacta.2016.09.022

    43. [43]

      Chang, Y.; Yang, S.; Liu, J.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. Toxicol. Lett. 2011, 200, 201.  doi: 10.1016/j.toxlet.2010.11.016

    44. [44]

      Das, S.; Singh, S.; Singh, V.; Joung, D.; Dowding, J. M.; Reid, D. L.; Anderson, J. M.; Zhai, L.; Khondaker, S. I.; Self, W. T. Part. Part. Syst. Charact. 2013, 30, 148.  doi: 10.1002/ppsc.201200066

    45. [45]

      Li, R.; Guiney, L. M.; Chang, C. H.; Mansukhani, N. D.; Ji, Z.; Wang, X.; Liao, Y. P.; Jiang, W.; Sun, B.; Hersam, M. C. ACS Nano 2018, 12, 1390.  doi: 10.1021/acsnano.7b07737

    46. [46]

      Wu, Y.; Wang, F.; Wang, S.; Ma, J.; Xu, M.; Gao, M.; Liu, R.; Chen, W.; Liu, S. Nanoscale 2018, 10, 14637.  doi: 10.1039/C8NR02798F

    47. [47]

      Miao, Z.; Li, X.; Zhi, L. RSC Adv. 2016, 6, 58561.  doi: 10.1039/C6RA12470D

    48. [48]

      Fang, X.; Liu, X.; Cui, Z.-K.; Qian, J.; Pan, J.; Li, X.; Zhuang, Q. J. Mater. Chem. A 2015, 3, 10005.  doi: 10.1039/C5TA00943J

    49. [49]

      Azadbakht, A.; Abbasi, A. R.; Derikvand, Z.; Karimi, Z. Monatshefte für Chemie-Chemical Monthly 2016, 147, 705.  doi: 10.1007/s00706-015-1527-3

    50. [50]

      Chiu, N.; Fan, S. Y.; Du Yang, C.; Huang, T. Y. Biosens. Bioelectron. 2017, 89, 370.  doi: 10.1016/j.bios.2016.06.073

    51. [51]

      Eng, A. Y. S.; Sofer, Z.; Sedmidubsk, D.; Pumera, M. ACS Nano. 2017, 11, 1789.  doi: 10.1021/acsnano.6b07746

    52. [52]

      Lammel, T.; Boisseaux, P.; Fernandezcruz, M.; Navas, J. M. Part. Fibre Toxicol. 2013, 10, 27.  doi: 10.1186/1743-8977-10-27

    53. [53]

      Li, J.; Zhang, X.; Jiang, J.; Wang, Y.; Jiang, H.; Zhang, J.; Nie, X.; Liu, B. Toxicol. Sci. 2019, 167, 269.  doi: 10.1093/toxsci/kfy235

    54. [54]

      Liu, Y.; Han, W.; Xu, Z.; Fan, W.; Peng, W.; Luo, S. Environ. Pollut. 2018, 237, 218.  doi: 10.1016/j.envpol.2018.02.021

    55. [55]

      Singh, S. K.; Singh, M. K.; Kulkarni, P. P.; Sonkar, V. K.; Grácio, J. J. A.; Dash, D. ACS Nano. 2012, 6, 2731.  doi: 10.1021/nn300172t

    56. [56]

      Zhang, W.; Ma, J.; Gao, D.; Zhou, Y.; Li, C.; Zha, J.; Zhang, J. Prog. Org. Coat. 2016, 94, 9.  doi: 10.1016/j.porgcoat.2016.01.013

    57. [57]

      Madadrang, C. J.; Kim, H. Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.; Hou, S. ACS Appl. Mater. Interfaces 2012, 4, 1186.  doi: 10.1021/am201645g

    58. [58]

      Najafi, F.; Moradi, O.; Rajabi, M.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V. K. J. Mol. Liq. 2015, 208, 106.  doi: 10.1016/j.molliq.2015.04.033

    59. [59]

      Mei, L.; Lin, C.; Cao, F.; Yang, D.; Jia, X.; Hu, S.; Miao, X.; Wu, P. ACS Appl. Nano Mater. 2019, 2, 2902.  doi: 10.1021/acsanm.9b00348

    60. [60]

      Rive, C.; Reina, G.; Wagle, P.; Treossi, E.; Palermo, V.; Bianco, A.; Delogu, L. G.; Rieckher, M.; Schumacher, B. Small 2019, 15, 1902699.  doi: 10.1002/smll.201902699

    61. [61]

      Eigler, S.; Hirsch, A. Angew. Chem. 2014, 53, 7720.  doi: 10.1002/anie.201402780

    62. [62]

      Mallakpour, S.; Abdolmaleki, A.; Borandeh, S. Appl. Surf. Sci. 2014, 307, 533.  doi: 10.1016/j.apsusc.2014.04.070

    63. [63]

      Goreham, R. V.; Schroeder, K. L.; Holmes, A.; Bradley, S. J.; Nann, T. Mikrochim. Acta. 2018, 185, 128.  doi: 10.1007/s00604-018-2679-8

    64. [64]

      Wang, C.; Zhang, Z.; Chen, B.; Gu, L.; Li, Y.; Yu, S. J. Colloid Interface Sci. 2018, 516, 332.  doi: 10.1016/j.jcis.2018.01.073

    65. [65]

      Thapa, R. K.; Byeon, J. H.; Ku, S.; Yong, C. S.; Kim, J. O. Npg Asia Materials. 2017, 9, e416.

    66. [66]

      Yasoda, K. Y.; Bobba, K. N.; Nedungadi, D.; Dutta, D.; Kumar, M. S.; Kothurkar, N. K.; Mishra, N.; Bhuniya, S. RSC Adv. 2016, 6, 62385.  doi: 10.1039/C6RA09706E

    67. [67]

      Deb, A.; Vimala, R. J. Drug Deliv. Sci. Technol. 2018, 43, 333.  doi: 10.1016/j.jddst.2017.10.025

    68. [68]

      Singh, M.; Gupta, P.; Baronia, R.; Singh, P.; Karuppiah, S.; Shanker, R.; Dwivedi, P. D.; Singh, S. P. Int. J. Nanomed. 2018, 13, 107.  doi: 10.2147/IJN.S124891

    69. [69]

      Liu, G.; Shen, H.; Mao, J.; Zhang, L.; Jiang, Z.; Sun, T.; Lan, Q.; Zhang, Z. ACS Appl. Mater. Interfaces 2013, 5, 6909.  doi: 10.1021/am402128s

    70. [70]

      Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Small 2010, 6, 537.  doi: 10.1002/smll.200901680

    71. [71]

      Sasidharan, A.; Swaroop, S.; Koduri, C. K.; Girish, C. M.; Chandran, P.; Panchakarla, L. S.; Somasundaram, V. H.; Gowd, G. S.; Nair, S. V.; Koyakutty, M. Carbon 2015, 95, 511.  doi: 10.1016/j.carbon.2015.08.074

    72. [72]

      Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 10876.  doi: 10.1021/ja803688x

    73. [73]

      de Sousa, M.; Visani de Luna, L. A.; Fonseca, L. C.; Giorgio, S.; Alves, O. L. ACS Appl. Nano Mater. 2018, 1, 922.  doi: 10.1021/acsanm.7b00324

    74. [74]

      Shen, H.; Liu, M.; He, H.; Zhang, L.; Huang, J.; Chong, Y.; Dai, J.; Zhang, Z. ACS Appl. Mater. Interfaces 2012, 4, 6317.  doi: 10.1021/am3019367

    75. [75]

      Luo, N.; Weber, J. K.; Wang, S.; Luan, B.; Yue, H.; Xi, X.; Du, J.; Yang, Z.; Wei, W.; Zhou, R. Nat. Commun. 2017, 8, 14537.  doi: 10.1038/ncomms14537

    76. [76]

      Mendonca, M. C. P.; Soares, E. S.; De Jesus, M. B.; Ceragioli, H. J.; Batista, . G.; Nyultoth, A.; Molnar, J.; Wilhelm, I.; Marostica, M. R.; Krizbai, I. A. Mol. Pharm. 2016, 13, 3913.  doi: 10.1021/acs.molpharmaceut.6b00696

    77. [77]

      Xu, M.; Zhu, J.; Wang, F.; Xiong, Y.; Wu, Y.; Wang, Q.; Weng, J.; Zhang, Z.; Chen, W.; Liu, S. ACS Nano 2016, 10, 3267.  doi: 10.1021/acsnano.6b00539

    78. [78]

      Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N. G.; Wu, T.; Li, L.; Li, J.; Gan, L. H. Small 2011, 7, 1569.  doi: 10.1002/smll.201100191

    79. [79]

      Liao, K.; Lin, Y. S.; Macosko, C. W.; Haynes, C. L. ACS Appl. Mater. Interfaces 2011, 3, 2607.  doi: 10.1021/am200428v

    80. [80]

      Bao, H.; Hu, J.; Gan, L. H.; Li, L. J. Polym. Sci., Part A:Polym. Chem. 2009, 47, 6682.  doi: 10.1002/pola.23709

    81. [81]

      Liu, Y.; Ai, K.; Lu, L. Chem. Rev. 2014, 114, 5057.  doi: 10.1021/cr400407a

    82. [82]

      Liu, M.; Zeng, G.; Wang, K.; Wan, Q.; Tao, L.; Zhang, X.; Wei, Y. Nanoscale 2016, 8, 16819.  doi: 10.1039/C5NR09078D

    83. [83]

      Hu, D.; Zhang, J.; Gao, G.; Sheng, Z.; Cui, H.; Cai, L. Theranostics 2016, 6, 1043.  doi: 10.7150/thno.14566

    84. [84]

      Wong, S.; Shim, M. S.; Kwon, Y. J. J. Mater. Chem. B 2014, 2, 595.
       

    85. [85]

      Adibimotlagh, B.; Lotfi, A. S.; Rezaei, A.; Hashemi, E. Mater. Sci. Eng. C 2018, 82, 323.  doi: 10.1016/j.msec.2017.05.039

    86. [86]

      Guo, C. X.; Ng, S. R.; Khoo, S. Y.; Zheng, X. T.; Chen, P.; Li, C. M. ACS Nano 2012, 6, 6944.  doi: 10.1021/nn301974u

    87. [87]

      Chiu, N.; Huang, T. Y.; Lai, H.; Liu, K. C. Nanoscale Res. Lett. 2014, 9, 445.  doi: 10.1186/1556-276X-9-445

    88. [88]

      Li, Y.; Lu, Q.; Liu, H.; Wang, J.; Zhang, P.; Liang, H.; Jiang, L.; Wang, S. Adv. Mater. 2015, 27, 6848.  doi: 10.1002/adma.201502615

    89. [89]

      Wang, B.; Song, Y.; Ge, L.; Zhang, S.; Ma, L. RSC Adv. 2019, 9, 9379.  doi: 10.1039/C8RA08682F

    90. [90]

      Goenka, S.; Sant, V.; Sant, S. J. Controlled Release. 2014, 173, 75.  doi: 10.1016/j.jconrel.2013.10.017

    91. [91]

      Draz, M. S.; Fang, B. A.; Zhang, P.; Hu, Z.; Gu, S.; Weng, K. C.; Gray, J. W.; Chen, F. F. Theranostics 2014, 4, 872.  doi: 10.7150/thno.9404

    92. [92]

      Yang, X.; Niu, G.; Cao, X.; Wen, Y.; Xiang, R.; Duan, H.; Chen, Y. J. Mater. Chem. 2012, 22, 6649.  doi: 10.1039/c2jm14718a

    93. [93]

      De Lazaro, I.; Vranic, S.; Marson, D.; Rodrigues, A. F.; Buggio, M.; Estebanarranz, A.; Mazza, M.; Posocco, P.; Kostarelos, K. Nanoscale 2019, 11, 13863.  doi: 10.1039/C9NR02301A

    94. [94]

      Bonanni, A.; Ambrosi, A.; Pumera, M. Chem.-Eur. J. 2012, 18, 1668.  doi: 10.1002/chem.201102850

    95. [95]

      Wang, G.; Ma, Y.; Wei, Z.; Qi, M. Chem. Eng. J. 2016, 289, 150.  doi: 10.1016/j.cej.2015.12.072

    96. [96]

      Liu, Y.; Guan, M.; Feng, L.; Deng, S.; Bao, J.; Xie, S.; Chen, Z.; Huang, R.; Zheng, L. Nanotechnology 2013, 24, 025604.  doi: 10.1088/0957-4484/24/2/025604

    97. [97]

      Wang, N.; Lin, M.; Dai, H.; Ma, H. Biosens. Bioelectron. 2016, 79, 320.  doi: 10.1016/j.bios.2015.12.056

    98. [98]

      Xie, X.; Mao, C.; Liu, X.; Zhang, Y.; Cui, Z.; Yang, X.; Yeung, K. W. K.; Pan, H.; Chu, P. K.; Wu, S. ACS Appl. Mater. Interfaces 2017, 9, 26417.  doi: 10.1021/acsami.7b06702

    99. [99]

      Yuan, B.; Hu, Y.; Chen, X.; Shi, Y.; Niu, Y.; Zhang, Y.; He, S.; Dai, H. Composites, Part A 2017, 100, 106.  doi: 10.1016/j.compositesa.2017.04.012

    100. [100]

      Pan, N.; Li, L.; Ding, J.; Li, S.; Wang, R.; Jin, Y.; Wang, X.; Xia, C. J. Hazard. Mater. 2016, 309, 107.  doi: 10.1016/j.jhazmat.2016.02.012

    101. [101]

      Li, X.; Huang, X.; Liu, D.; Wang, X.; Song, S.; Zhou, L.; Zhang, H. J. Phys. Chem. C 2011, 115, 21567.  doi: 10.1021/jp204502n

    102. [102]

      Kim, T. I.; Kwon, B.; Yoon, J.; Park, I. J.; Bang, G. S.; Park, Y.; Seo, Y.; Choi, S. ACS Appl. Mater. Interfaces 2017, 9, 7908.  doi: 10.1021/acsami.6b12464

    103. [103]

      Liu, Y.; Peng, J.; Wang, S.; Xu, M.; Gao, M.; Xia, T.; Weng, J.; Xu, A.; Liu, S. NPG Asia Mater. 2018, 10, e458.

    104. [104]

      Urbas, K.; Aleksandrzak, M.; Jedrzejczak, M.; Jedrzejczak, M.; Rakoczy, R.; Chen, X.; Mijowska, E. Nanoscale Res. Lett. 2014, 9, 656.  doi: 10.1186/1556-276X-9-656

    105. [105]

      Kavinkumar, T.; Varunkumar, K.; Ravikumar, V.; Manivannan, S. J. Colloid Interface Sci. 2017, 505, 1125.  doi: 10.1016/j.jcis.2017.07.002

    106. [106]

      Liu, N.; Tang, M.; Ding, J. Chemosphere. 2020, 245, 125624.  doi: 10.1016/j.chemosphere.2019.125624

    107. [107]

      Syama, S.; Mohanan, P. V. Nano-micro Lett. 2019, 11, 1.  doi: 10.1007/s40820-018-0235-z

    108. [108]

      Chong, Y.; Ge, C.; Yang, Z.; Garate, J. A.; Gu, Z.; Weber, J. K.; Liu, J.; Zhou, R. ACS Nano 2015, 9, 5713.  doi: 10.1021/nn5066606

    109. [109]

      Duan, G.; Kang, S.; Tian, X.; Garate, J. A.; Zhao, L.; Ge, C.; Zhou, R. Nanoscale 2015, 7, 15214.  doi: 10.1039/C5NR01839K

    110. [110]

      Hu, W.; Peng, C.; Lv, M.; Li, X.; Zhang, Y.; Chen, N.; Fan, C.; Huang, Q. ACS Nano 2011, 5, 3693.  doi: 10.1021/nn200021j

    111. [111]

      Hajipour, M. J.; Raheb, J.; Akhavan, O.; Arjmand, S.; Mashinchian, O.; Rahman, M.; Abdolahad, M.; Serpooshan, V.; Laurent, S.; Mahmoudi, M. Nanoscale 2015, 7, 8978.  doi: 10.1039/C5NR00520E

    112. [112]

      Kostarelos, K.; Novoselov, K. S. Science 2014, 344, 261.  doi: 10.1126/science.1246736

    113. [113]

      Li, Y.; Yuan, H.; Bussche, A. V. D.; Creighton, M. A.; Hurt, R. H.; Kane, A. B.; Gao, H. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12295.  doi: 10.1073/pnas.1222276110

    114. [114]

      Giulio, M. D.; Zappacosta, R.; Lodovico, S. D.; Campli, E. D.; Siani, G.; Fontana, A.; Cellini, L. Antimicrob. Agents Chemother. 2018, 62, e00547-18.

    115. [115]

      Liu, S.; Hu, M.; Zeng, T. H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Langmuir 2012, 28, 12364.  doi: 10.1021/la3023908

    116. [116]

      Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H. Nat. Nanotechnol. 2013, 8, 594.  doi: 10.1038/nnano.2013.125

    117. [117]

      Duan, G.; Zhang, Y.; Luan, B.; Weber, J. K.; Zhou, R. W.; Yang, Z.; Zhao, L.; Xu, J.; Luo, J.; Zhou, R. Sci. Rep. 2017, 7, 42767.  doi: 10.1038/srep42767

    118. [118]

      Zhu, J.; Xu, M.; Gao, M.; Zhang, Z.; Xu, Y.; Xia, T.; Liu, S. ACS Nano 2017, 11, 2637.  doi: 10.1021/acsnano.6b07311

    119. [119]

      Sasidharan, A.; Panchakarla, L. S.; Chandran, P.; Menon, D.; Nair, S. V.; Rao, C. N. R.; Koyakutty, M. Nanoscale 2011, 3, 2461.  doi: 10.1039/c1nr10172b

    120. [120]

      Ema, M.; Gamo, M.; Honda, K. Regul. Toxicol. Pharmacol. 2017, 85, 7.  doi: 10.1016/j.yrtph.2017.01.011

    121. [121]

      An, W.; Zhang, Y.; Zhang, X.; Li, K.; Kang, Y.; Akhtar, S.; Sha, X.; Gao, L. Exp. Eye Res. 2018, 174, 59.  doi: 10.1016/j.exer.2018.05.024

    122. [122]

      Sengupta, I.; Bhattacharya, P.; Talukdar, M.; Neogi, S.; Pal, S. K.; Chakraborty, S. Colloid Interface Sci. Commun. 2019, 28, 60.  doi: 10.1016/j.colcom.2018.12.001

    123. [123]

      Zucker, I.; Werber, J. R.; Fishman, Z. S.; Hashmi, S. M.; Gabinet, U. R.; Lu, X.; Osuji, C. O.; Pfefferle, L. D.; Elimelech, M. Environ. Sci. Technol. Lett. 2017, 4, 404.  doi: 10.1021/acs.estlett.7b00358

    124. [124]

      Moore, T. C.; Yang, A. H.; Ogungbesan, O.; Hartkamp, R.; Iacovella, C. R.; Zhang, Q.; McCabe, C. J. Phys. Chem. B 2019, 123, 7711.  doi: 10.1021/acs.jpcb.9b04042

    125. [125]

      Chen, G.; Yang, H.; Lu, C.; Chao, Y.; Hwang, S.; Chen, C.; Lo, K.; Sung, L.; Luo, W.; Tuan, H. Biomaterials 2012, 33, 6559.  doi: 10.1016/j.biomaterials.2012.05.064

    126. [126]

      Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R. P.; Zuo, Y. Y.; Xia, T.; Liu, S. ACS Nano 2015, 9, 10498.  doi: 10.1021/acsnano.5b04751

    127. [127]

      Qu, G.; Liu, S.; Zhang, S.; Wang, L.; Wang, X.; Sun, B.; Yin, N.; Gao, X.; Xia, T.; Chen, J. ACS Nano 2013, 7, 5732.  doi: 10.1021/nn402330b

    128. [128]

      Zhang, Y.; Ma, C.; Wang, Z.; Zhou, Q.; Sun, S.; Ma, P.; Lv, L.; Jiang, X.; Wang, X.; Zhan, L. Nanoscale 2020, 12, 8147.  doi: 10.1039/C9NR10713D

    129. [129]

      Zhang, J.; Sun, T.; Niu, A.; Tang, Y.; Deng, S.; Luo, W.; Xu, Q.; Wei, D.; Pei, D. Biomaterials 2017, 133, 49.  doi: 10.1016/j.biomaterials.2017.04.026

    130. [130]

      Singh, S. K.; Singh, M. K.; Nayak, M. K.; Kumari, S.; Shrivastava, S.; Gracio, J.; Dash, D. ACS Nano 2011, 5, 4987.  doi: 10.1021/nn201092p

    131. [131]

      Sun, Y.; Dai, H.; Chen, S.; Xu, M.; Wang, X.; Zhang, Y.; Xu, S.; Xu, A.; Weng, J.; Liu, S. Nanotoxicology 2018, 12, 117.  doi: 10.1080/17435390.2018.1425498

    132. [132]

      Tian, J.; Luo, Y.; Huang, L.; Feng, Y.; Ju, H.; Yu, B. Biosens. Bioelectron. 2016, 80, 519.  doi: 10.1016/j.bios.2016.02.018

    133. [133]

      Zhao, X.; Liu, P. RSC Adv. 2014, 4, 24232.  doi: 10.1039/C4RA02466D

    134. [134]

      Li, Y.; Wu, Q.; Zhao, Y.; Bai, Y.; Chen, P.; Xia, T.; Wang, D. ACS Nano 2014, 8, 2100.  doi: 10.1021/nn4065378

    135. [135]

      Sydlik, S. A.; Jhunjhunwala, S.; Webber, M. J.; Anderson, D. G.; Langer, R. ACS Nano 2015, 9, 3866.  doi: 10.1021/acsnano.5b01290

    136. [136]

      Akhavan, O.; Ghaderi, E.; Emamy, H.; Akhavan, F. Carbon 2013, 54, 419.  doi: 10.1016/j.carbon.2012.11.058

    137. [137]

      Gurunathan, S.; Han, J. W.; Dayem, A. A.; Eppakayala, V.; Kim, J. Int. J. Nanomed. 2012, 7, 5901.
       

    138. [138]

      Zhang, M.; Yu, Q.; Liang, C.; Liu, Z.; Zhang, B.; Li, M. Ecotoxicol. Environ. Saf. 2016, 132, 372.  doi: 10.1016/j.ecoenv.2016.06.031

    139. [139]

      Mohamed, H. R. H.; Welson, M.; Yaseen, A. E.; Elghor, A. A. Environ. Sci. Pollut. Res. 2020, 27, 264.  doi: 10.1007/s11356-019-06930-0

    140. [140]

      Duch, M. C.; Budinger, G. R. S.; Liang, Y. T.; Soberanes, S.; Urich, D.; Chiarella, S. E.; Campochiaro, L.; Gonzalez, A.; Chandel, N. S.; Hersam, M. C. Nano Lett. 2011, 11, 5201.  doi: 10.1021/nl202515a

    141. [141]

      Liu, X.; Sen, S.; Liu, J.; Kulaots, I.; Geohegan, D. B.; Kane, A. B.; Puretzky, A. A.; Rouleau, C. M.; More, K. L.; Palmore, G. T. R. Small 2011, 7, 2775.  doi: 10.1002/smll.201100651

    142. [142]

      Liu, S.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. ACS Nano 2011, 5, 6971.  doi: 10.1021/nn202451x

    143. [143]

      Dutta, T.; Sarkar, R.; Pakhira, B.; Ghosh, S.; Sarkar, R.; Barui, A.; Sarkar, S. RSC Adv. 2015, 5, 80192.  doi: 10.1039/C5RA14061G

    144. [144]

      Qiu, Y.; Wang, Z.; Owens, A. C. E.; Kulaots, I.; Chen, Y.; Kane, A. B.; Hurt, R. H. Nanoscale 2014, 6, 11744.  doi: 10.1039/C4NR03275F

    145. [145]

      Chowdhuri, A. R.; Tripathy, S.; Chandra, S.; Roy, S.; Sahu, S. K. RSC Adv. 2015, 5, 49420.  doi: 10.1039/C5RA05393E

    146. [146]

      Parsa, A.; Salout, S. A. J. Electroanal. Chem. 2016, 760, 113.  doi: 10.1016/j.jelechem.2015.11.021

    147. [147]

      Zhao, K. L.; Hao, Y.; Zhu, M.; Cheng, G. S. Acta Chim. Sinica 2018, 76, 168(in Chinese).
       

    148. [148]

      Xu, M.; Soliman, M. G.; Sun, X.; Pelaz, B.; Feliu, N.; Parak, W. J.; Liu, S. ACS Nano 2018, 12, 10104.  doi: 10.1021/acsnano.8b04906

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Weiliang Wang Zijing Yu Jingyuan Li Hong Shang . The Debate between Traditional Chinese Medicine and Western Medicine. University Chemistry, 2024, 39(9): 109-114. doi: 10.12461/PKU.DXHX202402001

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    7. [7]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    10. [10]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    11. [11]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Luhong Chen Yan Zhang . Chem&Bio Interdisciplinary Graduates Training in Nanjing University Promoted by Chemistry and Biomedicine Innovation Center. University Chemistry, 2024, 39(6): 12-16. doi: 10.3866/PKU.DXHX202311089

    17. [17]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    18. [18]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    19. [19]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(59)
  • Abstract views(4769)
  • HTML views(1014)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return