Citation: Bi Ruyi, Mao Dan, Wang Jiangyan, Yu Ranbo, Wang Dan. Hollow Nanostructures for Surface/Interface Chemical Energy Storage Application[J]. Acta Chimica Sinica, ;2020, 78(11): 1200-1212. doi: 10.6023/A20060215 shu

Hollow Nanostructures for Surface/Interface Chemical Energy Storage Application

  • Corresponding author: Wang Jiangyan, jywang@ipe.ac.cn Yu Ranbo, ranboyu@ustb.edu.cn Wang Dan, danwang@ipe.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 8 June 2020
    Available Online: 14 August 2020

    Fund Project: the National Natural Science Foundation of China 21590795Project supported by the National Natural Science Foundation of China (Nos. 51872024, 21820102002, 21590795, 51661165013) and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201623)the National Natural Science Foundation of China 21820102002the Scientific Instrument Developing Project of the Chinese Academy of Sciences YZ201623the National Natural Science Foundation of China 51872024the National Natural Science Foundation of China 51661165013

Figures(9)

  • Hollow nanostructures garner tremendous interest in the area of energy conversion and storage, owning to its large surface area, facilitated transport path and good buffering capability. In this paper, we summarize the recent research on hollow nanostructures with controllable structure and morphology for surface/interface chemical energy storage. First, we introduce the charge storage mechanism and challenges of surface/interface chemical energy storage, mainly including supercapacitor. Subsequently, we discuss the influence of structure parameters of hollow nanostructures on the performance of surface/interface chemical energy storage device in detail. Afterwards, we systematically outline the recent applications of hollow nanostructures as electrode materials for supercapacitors. By adopting hollow nanostructures, the specific capacitance, cycle stability and rate capability of supercapacitors can be greatly improved. Finally, the emergent challenges and future development directions in hollow nanostructures for surface/interface chemical energy storage are provided.
  • 加载中
    1. [1]

      Reddy, A. L. M.; Gowda, S. R.; Shaijumon, M. M.; Ajayan, P. M. Adv. Mater. 2012, 24, 5045.  doi: 10.1002/adma.201104502

    2. [2]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294.  doi: 10.1038/nature11475

    3. [3]

      Eshetu, G. G.; Armand, M.; Scrosati, B.; Passerini, S. Angew. Chem., Int. Ed. 2014, 53, 13342.  doi: 10.1002/anie.201405910

    4. [4]

      Peng, Z. K.; Ding, H. M.; Chen, R. F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681.
       

    5. [5]

      Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22, E28.  doi: 10.1002/adma.200903328

    6. [6]

      Xu, M.; Yu, Q.; Liu, Z. H.; Lv, J. S.; Lian, S. T.; Hu, B.; Mai, L. Q.; Zhou, L. Nanoscale 2018, 10, 21604.  doi: 10.1039/C8NR07560C

    7. [7]

      Yu, Z. N.; Tetard, L.; Zhai, L.; Thomas, J. Y. Energy Environ. Sci. 2015, 8, 702.  doi: 10.1039/C4EE03229B

    8. [8]

      Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Chem. Soc. Rev. 2015, 44, 1777.  doi: 10.1039/C4CS00266K

    9. [9]

      Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Ayrbach, D. Energy Environ. Sci. 2011, 4, 3243.  doi: 10.1039/c1ee01598b

    10. [10]

      Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Adv. Mater. 2012, 24, 5166.  doi: 10.1002/adma.201202146

    11. [11]

      Simon, P.; Gogotsi, Y.; Dunn, B. Science 2014, 343, 1210.  doi: 10.1126/science.1249625

    12. [12]

      Zhang, L. L.; Zhao, X. Chem. Soc. Rev. 2009, 38, 2520.  doi: 10.1039/b813846j

    13. [13]

      Guo, X. T.; Zheng, S. S.; Zhang, G. X.; Xiao, X.; Li, X. R.; Xu, Y. X.; Xue, H. G.; Pang, H. Energy Storage Mater. 2017, 9, 150.  doi: 10.1016/j.ensm.2017.07.006

    14. [14]

      Chen, K. S.; Xu, R.; Luu, N. S.; Secor, E. B.; Hamamoto, K.; Li, Q.; Kim, S.; Sangwan, V. K.; Balla, I.; Guiney, L. M. Nano Lett. 2017, 17, 2539.  doi: 10.1021/acs.nanolett.7b00274

    15. [15]

      Bin, D. S.; Li, Y. M.; Sun, Y. G.; Duan, S. Y.; Lu, Y. X.; Ma, J. M.; Cao, A. M.; Wan, L. J. Adv. Energy Mater. 2018, 8, 1800855.  doi: 10.1002/aenm.201800855

    16. [16]

      Wang, Z. B.; Ge, Q. Q.; Shao, J.; Yan, Y. S. J. Am. Chem. Soc. 2009, 131, 6910.  doi: 10.1021/ja901626d

    17. [17]

      Lai, X. Y.; Halpert, J. E.; Wang, D. Energy Environ. Sci. 2012, 5, 5604.  doi: 10.1039/C1EE02426D

    18. [18]

      Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H.; Su, Z. G.; Zhao, H. J.; Wang, D. Chem. Soc. Rev. 2015, 44, 6749.  doi: 10.1039/C5CS00344J

    19. [19]

      Mao, D.; Wan, J. W.; Wang, J. Y.; Wang, D. Adv. Mater. 2019, 31, 1802874.  doi: 10.1002/adma.201802874

    20. [20]

      Wang, J. Y.; Wan, J. W.; Wang, D. Acc. Chem. Res. 2019, 52, 2169.  doi: 10.1021/acs.accounts.9b00112

    21. [21]

      Bin, D. S.; Lin, X. J.; Sun, Y. G.; Xu, Y. S.; Zhang, K.; Cao, A. M.; Wan, L. J. J. Am. Chem. Soc. 2018, 140, 7127.  doi: 10.1021/jacs.8b02178

    22. [22]

      Li, B. T.; Huang, J.; Wang, X. J. Chem. Res. Chinese Univ. 2019, 35, 125.  doi: 10.1007/s40242-018-8158-2

    23. [23]

      Ren, H.; Yu, R. B.; Wang, J. Y.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H. J.; Wang, D. Nano Lett. 2014, 14, 6679.  doi: 10.1021/nl503378a

    24. [24]

      Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. Energy Environ. Sci. 2014, 7, 632.  doi: 10.1039/C3EE43319F

    25. [25]

      Zhao, X. X.; Wang, J. Y.; Yu, R. B.; Wang, D. J. Am. Chem. Soc. 2018, 140, 17114.  doi: 10.1021/jacs.8b09241

    26. [26]

      Ren, H.; Yu, R. B.; Qi, J.; Zhang, L. J.; Jin, Q.; Wang, D. Adv. Mater. 2019, 31, 1805754.  doi: 10.1002/adma.201805754

    27. [27]

      Wang, J. Y.; Tang, H. J.; Wang, H.; Yu, R. B.; Wang, D. Mater. Chem. Front. 2017, 1, 414.  doi: 10.1039/C6QM00273K

    28. [28]

      Wang, J. Y.; Cui, Y.; Wang, D. Adv. Mater. 2019, 31, 1801993.  doi: 10.1002/adma.201801993

    29. [29]

      Zhao, X. X.; Yu, R. B.; Tang, H. J.; Mao, D.; Qi, J.; Wang, B.; Zhang, Y.; Zhao, H. J.; Hu, W. P.; Wang, D. Adv. Mater. 2017, 29, 1700550.  doi: 10.1002/adma.201700550

    30. [30]

      Jiao, C. W.; Wang, Z. M.; Zhao, X. X.; Wang, H.; Wang, J.; Yu, R. B.; Wang, D. Angew. Chem. Int. Ed. 2019, 58, 996.  doi: 10.1002/anie.201811683

    31. [31]

      Wang, X.; Li, Y. B.; Du, L. Y.; Gao, F. J.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2018, 76, 627.
       

    32. [32]

      Salhabi, E. H. M.; Zhao, J.; Wang, J.; Yang, M.; Wang, B.; Wang, D. Angew. Chem. Int. Ed. 2019, 58, 9078.  doi: 10.1002/anie.201903295

    33. [33]

      Dong, Z. H.; Lai, X. Y.; Halpert, J. E.; Yang, N. L.; Yi, L. X.; Zhai, J.; Wang, D.; Tang, Z. Y.; Jiang, L. Adv. Mater. 2012, 24, 1046.  doi: 10.1002/adma.201104626

    34. [34]

      Dong, Z. H.; Ren, H.; Hessel, C. M.; Wang, J. Y.; Yu, R. B.; Jin, Q.; Yang, M.; Hu, Z. D.; Chen, Y. F.; Tang, Z. Y.; Zhao, H. J.; Wang, D. Adv. Mater. 2014, 26, 905.  doi: 10.1002/adma.201304010

    35. [35]

      Aravindan, V.; Ulaganathan, M.; Madhavi, S. J. Mater. Chem. A 2016, 4, 7538.  doi: 10.1039/C6TA02478E

    36. [36]

      Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kanel, R. B. Chem. Rev. 2018, 118, 9233.  doi: 10.1021/acs.chemrev.8b00252

    37. [37]

      Stoller, M. D.; Ruoff, R. S. Energy Environ. Sci. 2010, 3, 1294.  doi: 10.1039/c0ee00074d

    38. [38]

      Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51, 9994.  doi: 10.1002/anie.201201429

    39. [39]

      Fuertes, A. B.; Sevilla, M. ChemSusChem 2015, 8, 1049.  doi: 10.1002/cssc.201403267

    40. [40]

      Li, B.; Dai, F.; Xiao, Q. F.; Yang, L.; Shen, J. M.; Zhang, C. M.; Cai, M. Energy Environ. Sci. 2015, 9, 102.

    41. [41]

      Chen, K. F.; Xue, D. F. Chinese J. Chem. 2017, 35, 861.  doi: 10.1002/cjoc.201600785

    42. [42]

      Wang, C.; Wang, D. Y.; Zheng, S.; Fang, X. Q.; Zhang, W. L.; Tian, Y.; Lin, H. B.; Lu, H. Y.; Jiang, L. Chem. Res. Chin. Univ. 2018, 34, 983.  doi: 10.1007/s40242-018-8127-9

    43. [43]

      Senokos, E.; Reguero, V.; Palma, J.; Vilatela, J. J.; Marcilla, R. Nanoscale 2016, 8, 3620.  doi: 10.1039/C5NR07697H

    44. [44]

      Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Peng, H. J.; Wei, F. Nat. Commun. 2014, 5, 3410.  doi: 10.1038/ncomms4410

    45. [45]

      Gu, X. Y.; Hong, Y.; Ai, G.; Wang, C. Y.; Mao, W. F. Acta Chim. Sinica 2018, 76, 644.
       

    46. [46]

      Futaba, D. N.; Dai, K. H.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Nat. Mater. 2006, 5, 987.  doi: 10.1038/nmat1782

    47. [47]

      Miller, J. R.; Outlaw, R. A.; Holloway, B. C. Electrochim. Acta 2011, 56, 10443.  doi: 10.1016/j.electacta.2011.05.122

    48. [48]

      Conway, B. E.; Birss, V.; Wojtowicz, J. J. Power Sources 1997, 66, 1.  doi: 10.1016/S0378-7753(96)02474-3

    49. [49]

      Yang, Q.; Lu, Z. Y.; Li, T.; Sun, X. M.; Liu, J. F. Nano Energy 2014, 7, 170.  doi: 10.1016/j.nanoen.2014.03.005

    50. [50]

      Guan, B. Y.; Yu, L.; Wang, X.; Song, S. Y.; Lou, X. W. Adv. Mater. 2017, 29, 1605051.  doi: 10.1002/adma.201605051

    51. [51]

      Wang, W. C.; Zhang, N.; Shi, Z. Y.; Ye, Z. R.; Gao, Q. Y.; Zhi, M. J.; Hong, Z. L. Chem. Eng. J. 2018, 338, 55.  doi: 10.1016/j.cej.2018.01.024

    52. [52]

      Oliveira, A. H. P.; Oliveira, H. P. J. Power Sources 2014, 268, 45.  doi: 10.1016/j.jpowsour.2014.06.027

    53. [53]

      Jiang, Y. Q.; Liu, J. P. Energy Environ. Mater. 2019, 2, 30.  doi: 10.1002/eem2.12028

    54. [54]

      Conway, B. E.; Pell, W. G. J. Solid State Electrochem. 2003, 7, 637.  doi: 10.1007/s10008-003-0395-7

    55. [55]

      Engelsmann, K.; Lorenz, W. J.; Schmidt, E. J. Electroanal. Chem. 1980, 114, 1.  doi: 10.1016/S0022-0728(80)80431-1

    56. [56]

      Herrero, E.; Buller, L. J.; Abruña, H. D. Chem. Rev. 2001, 101, 1897.  doi: 10.1021/cr9600363

    57. [57]

      Xia, H.; Meng, Y. S.; Yuan, G. L.; Cui, C.; Lu, L. Electrochem. Solid State Lett. 2012, 15, A60.  doi: 10.1149/2.023204esl

    58. [58]

      Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T. Nano Lett. 2006, 6, 2690.  doi: 10.1021/nl061576a

    59. [59]

      He, Q.; Zhang, C.; Li, X.; Wang, X.; Mu, P.; Jiang, J. X. Acta Chim. Sinica 2018, 76, 202.
       

    60. [60]

      Toupin, M.; Brousse, T.; Bélanger, D. Chem. Mater. 2004, 16, 3184.  doi: 10.1021/cm049649j

    61. [61]

      Chen, H.; Zhou, S. X.; Chen, M.; Wu, L. M. J. Mater. Chem. 2012, 22, 25207.  doi: 10.1039/c2jm35054h

    62. [62]

      Mastragostino, M.; Arbizzani, C.; Soavi, F. J. Power Sources 2001, 97, 812.

    63. [63]

      Zhang, H. H.; Li, J. Y.; Gu, C.; Yao, M. M.; Yang, B.; Lu, P.; Ma, Y. G. J. Power Sources 2016, 332, 413.  doi: 10.1016/j.jpowsour.2016.09.137

    64. [64]

      Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. Nat. Mater. 2013, 12, 518.  doi: 10.1038/nmat3601

    65. [65]

      Tang, H. J.; Wang, J. Y.; Yin, H. J.; Zhao, H. J.; Wang D.; Tang, Z. Y. Adv. Mater. 2015, 27, 1117.  doi: 10.1002/adma.201404622

    66. [66]

      Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Science 2013, 341, 1502.  doi: 10.1126/science.1241488

    67. [67]

      Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Nat. Mater. 2010, 9, 146.  doi: 10.1038/nmat2612

    68. [68]

      Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Nat. Rev. Mater. 2019.

    69. [69]

      Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P. L.; Grey, C. P.; Dunn, B.; Simon, P. Nat. Energy 2016, 1, 16070.  doi: 10.1038/nenergy.2016.70

    70. [70]

      Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H. S.; Honma, I. J. Am. Chem. Soc. 2007, 129, 7444.  doi: 10.1021/ja0681927

    71. [71]

      Park, M. S.; Lim, Y. G.; Kim, J. H.; Kim, Y. J.; Cho, J.; Kim, J. S. Adv. Energy Mater. 2011, 1, 1002.  doi: 10.1002/aenm.201100270

    72. [72]

      Naoi, K.; Naoi, W.; Aoyagi, S.; Miyamoto, J.; Kamino, T. Acc. Chem. Res. 2013, 46, 1075.  doi: 10.1021/ar200308h

    73. [73]

      Wang, J. Y.; Tang, H. J.; Zhang, L. J.; Ren, H.; Yu, R. B.; Jin, Q.; Qi, J.; Mao, D.; Yang, M.; Wang, Y.; Liu, P.; Zhang, Y.; Wen, Y. R.; Gu, L.; Ma, G. H.; Su, Z. G.; Tang, Z. Y.; Zhao, H. J.; Wang, D. Nat. Energy 2016, 1, 16050.  doi: 10.1038/nenergy.2016.50

    74. [74]

      Guan, Q.; Cheng, J. L.; Li, X. D.; Ni, W.; Wang, B. Chinese J. Chem. 2017, 35, 48.  doi: 10.1002/cjoc.201600229

    75. [75]

      Zhang, W.; Chi, Z. X.; Mao, W. X.; Lv, R. W.; Cao, A. M.; Wan, L. J. Angew. Chem. Int. Ed. 2014, 126, 12990.  doi: 10.1002/ange.201406856

    76. [76]

      Li, Y. S.; Shi, J. L. Adv. Mater. 2014, 26, 3176.  doi: 10.1002/adma.201305319

    77. [77]

      Wang, Y. P.; Pan, A. Q.; Zhu, Q. Y.; Nie, Z. W.; Zhang, Y. F.; Tang, Y.; Liang, S. Q.; Cao, G. Z. J. Power Sources 2014, 272, 107.  doi: 10.1016/j.jpowsour.2014.08.067

    78. [78]

      Jia, H. N.; Wang, Z. Y.; Li, C.; Si, X. Q.; Zheng, X. H.; Cai, Y. F.; Lin, J. H.; Liang, H. Y.; Qi, J. L.; Cao, J.; Feng, J. C.; Fei, W. D. J. Mater. Chem. A 2019, 7, 6686.  doi: 10.1039/C8TA11482J

    79. [79]

      Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Angew. Chem. Int. Ed. 2015, 54, 1868.  doi: 10.1002/anie.201409776

    80. [80]

      Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W. Adv. Mater. 2017, 29, 1604563.  doi: 10.1002/adma.201604563

    81. [81]

      Zhao, Y. F.; Wei, R.; Jing, H.; Song, Y. F.; Zhang, C. M.; Xiong, D. B.; Gao, F. M.; Wu, J. S.; Xia, Y. Y. ACS Appl. Mater. Interfaces 2015, 7, 1132.  doi: 10.1021/am506815f

    82. [82]

      Liu, H.; Zhao, D. X.; Gong, G. D.; Zhang, Z. X.; Jia, T.; Chen, H. Z. Acta Chim. Sinica 2019, 40, 18.

    83. [83]

      Jiang, H.; Lee, P. S.; Li, C. Z. Energy Environ. Sci. 2013, 6, 41.  doi: 10.1039/C2EE23284G

    84. [84]

      Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. Nat. Mater. 2015, 14, 271.  doi: 10.1038/nmat4170

    85. [85]

      Hu, S.; Rajamani, R.; Yu, X. Appl. Phys. Lett. 2012, 100, 104103.  doi: 10.1063/1.3691948

    86. [86]

      Yan, T. T.; Xing, G. L.; Ben, T. Acta Chim. Sinica 2018, 76, 366.
       

    87. [87]

      Wang, K. W.; Huang, L.; Razzaque, S.; Jin, S. B.; Tan, B. Small 2016, 12, 3134.  doi: 10.1002/smll.201600256

    88. [88]

      Wang, C.; Wang, F. X.; Liu, Z. C.; Zhao, Y. J.; Liu, Y.; Yue, Q.; Zhu, H. W.; Deng, Y. H.; Wu, Y. P.; Zhao, D. Y. Nano Energy 2017, 41, 674.  doi: 10.1016/j.nanoen.2017.10.025

    89. [89]

      Chen, L. F.; Lu, Y.; Yu, L.; Lou, X. W. Energy Environ. Sci. 2017, 10, 1777.  doi: 10.1039/C7EE00488E

    90. [90]

      Lv, B. J.; Li, P. P.; Liu, Y.; Lin, S. S.; Gao, B. F.; Lin, B. Z. Appl. Surf. Sci. 2018, 437, 169.  doi: 10.1016/j.apsusc.2017.12.171

    91. [91]

      Li, Z. W.; Zhong, J. L.; Chen, N. N.; Xue, B.; Mi, H. Y. Acta Chim. Sinica 2018, 76, 209.
       

    92. [92]

      He, Y.; Xiang, K. X.; Wang, Y. F.; Zhou, W.; Zhu, Y. R.; Xiao, L.; Chen, W. H.; Chen, X. H.; Chen, H.; Cheng, H.; Lu, Z. G. Carbon 2019, 154, 330.  doi: 10.1016/j.carbon.2019.08.022

    93. [93]

      Cui, C. Y.; Wang, H.; Wang, M.; Ou, X. W.; Wei, Z. X.; Ma, J. M.; Tang, Y. B. Small 2019, 15, 1902659.  doi: 10.1002/smll.201902659

    94. [94]

      Thangavel, R.; Kannan, A. G.; Ponraj, R.; Yoon, G.; Aravindan, V.; Kim, D. W.; Kang, K.; Yoon, W. S.; Lee, Y. S. Energy Stor. Mater. 2020, 25, 702.  doi: 10.1016/j.ensm.2019.09.016

    95. [95]

      Jia, H. N.; Wang, Z. Y.; Li, C.; Si, X. Q.; Zheng, X. H.; Cai, Y. F.; Lin, J. H.; Liang, H. Y.; Qi, J. L.; Cao, J.; Feng, J. C.; Fei, W. D. J. Mater. Chem. A 2019, 7, 6686.  doi: 10.1039/C8TA11482J

    96. [96]

      Hussain, S. K.; Nagaraju, G.; Sekhar, S. C.; Yu, J. S. Energy Stor. Mater. 2020, 27, 405.  doi: 10.1016/j.ensm.2020.01.024

    97. [97]

      Li, L.; Hu, H. L.; Ding, S. J. Chem. J. Chinese Univ. 2018, 39, 2010.

    98. [98]

      Guan, C.; Liu, X. M.; Ren, W. N.; Li, X.; Cheng, C. W.; Wang, J. Adv. Energy Mater. 2017, 7, 1602391.  doi: 10.1002/aenm.201602391

    99. [99]

      Zhao, B.; Huang, S. Y.; Wang, T.; Zhang, K.; Yuen, M. M. F.; Xu, J. B.; Fu, X. Z.; Sun, R.; Wong, C. P. J. Power Sources 2015, 298, 83.  doi: 10.1016/j.jpowsour.2015.08.043

    100. [100]

      Xu, T.; Meng, Q. H; Fan, Q.; Yang, M.; Zhi, W. Y.; Cao, B. Chinese J. Chem. 2017, 35, 1575.  doi: 10.1002/cjoc.201700190

    101. [101]

      Wang, S.; Fan, X. Y.; Cui, Y.; Gou, L.; Wang, X. G.; Li, D. L. Acta Chim. Sinica 2019, 77, 551.
       

    102. [102]

      Wang, J. Y.; Tang, H. J.; Ren, H.; Yu, R, B.; Qi, J.; Mao, D.; Zhao, H. J.; Wang, D. Adv. Sci. 2014, 1, 1400011.

    103. [103]

      Chen, M. J.; Wang, J. Y.; Tang, H. J.; Yang, Y.; Wang, B.; Zhao, H. J.; Wang, D. Inorg. Chem. Front. 2016, 3, 1065.

    104. [104]

      Wang, C.; Wang, J. Y.; Hu, W. P.; Wang, D. Chem. Res. Chin. Univ. 2020, 36, 6.

    105. [105]

      Deng, Q. L.; Fu, Y. P.; Zhu, C. B.; Yu, Y. Small 2019, 15, 1804884.  doi: 10.1002/smll.201804884

    106. [106]

      Bi, R. Y.; Xu, N.; Ren, H.; Yang, N. L.; Sun, Y. G.; Cao, A. M.; Yu, R. B.; Wang, D. Angew. Chem. Int. Ed. 2020, 132, 4895.  doi: 10.1002/ange.201914680

    107. [107]

      An, C. H.; Wang, Y. J.; Huang, Y. N.; Xu, Y. N.; Jiao, L. F.; Yuan, H. T. Nano Energy 2014, 10, 125.  doi: 10.1016/j.nanoen.2014.09.015

    108. [108]

      Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. Nano Res. 2016, 9, 2026.  doi: 10.1007/s12274-016-1093-y

    109. [109]

      Hu, H.; Guan, B. Y.; Lou, X. W. Chem 2016, 1, 102.  doi: 10.1016/j.chempr.2016.06.001

    110. [110]

      Cao, H. L.; Wang, X.; Chen, X.; Liu, H. Y.; Zheng, J. S.; Zhou, W. F. J. Mater. Chem. A 2017, 5, 20729.  doi: 10.1039/C7TA05784A

    111. [111]

      Hou, L. R.; Shi, Y. Y.; Zhu, S. Q.; Rehan, M.; Pang, G.; Zhang, X. G.; Yuan, C. Z. J. Mater. Chem. A 2017, 5, 133.  doi: 10.1039/C6TA05788H

    112. [112]

      Hua, H.; Liu, S. J.; Chen, Z. Y.; Bao, R. Q.; Shi, Y. Y. Hou, L. R.; Pang, G.; Hui, K. N.; Zhang, X. G.; Yuan, C. Z. Sci. Rep. 2016, 6, 20973.  doi: 10.1038/srep20973

    113. [113]

      Li, D. W.; Zhao, X. X.; Yu, R. B.; Wang, B.; Wang, H.; Wang, D. Inorg. Chem. Front. 2018, 5, 535.  doi: 10.1039/C7QI00760D

    114. [114]

      Jia, H. N.; Wang, Z. Y.; Zheng, X. H.; Cai, Y. F.; Lin, J. H.; Liang, H. Y.; Qi, J. L.; Cao, J.; Feng. J. C.; Li, W. D. Electrochim. Acta 2019, 312, 54.  doi: 10.1016/j.electacta.2019.04.192

    115. [115]

      Chen, Y. M.; Li, Z.; Lou, X. W. Angew. Chem. Int. Ed. 2015, 54, 10521.  doi: 10.1002/anie.201504349

    116. [116]

      Shen, L. F.; Yu, L.; Wu, H. B.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Nat. Commun. 2015, 6, 6694.  doi: 10.1038/ncomms7694

    117. [117]

      Sun, H. Y.; Liu, S. W.; Lu, Q. F.; Zhong, H. Y. Mater. Lett. 2014, 128, 136.  doi: 10.1016/j.matlet.2014.04.134

    118. [118]

      Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei. F. Adv. Funct. Mater. 2012, 22, 2632.  doi: 10.1002/adfm.201102839

    119. [119]

      Sun, Y. M.; Sills, R. B.; Hu, X. L.; Seh, Z. W.; Xiao, Y.; Xu, H. H.; Luo, W.; Jin, H. Y.; Xin, Y.; Li, T. Q.; Zhang, Z. L.; Zhou, J.; Cai, W.; Huang, Y. H.; Cui, Y. Nano Lett. 2015, 15, 3899.  doi: 10.1021/acs.nanolett.5b00738

    120. [120]

      Lu, Q.; Chen, Y. P.; Li, W. F.; Chen, J. G. G.; Xiao, J. Q.; Jiao, F. J. Mater. Chem. A 2013, 1, 2331.  doi: 10.1039/c2ta00921h

    121. [121]

      Wu, N. S.; Low, J. X.; Liu, T.; Yu, J. G.; Cao, S. W. Appl. Surf. Sci. 2017, 413, 35.  doi: 10.1016/j.apsusc.2017.03.297

    122. [122]

      Xuan, X. Y.; Qian, M.; Han, L.; Wan, L. J.; Li, Y. Q.; Lu, T.; Pan, L. K.; Niu, Y. P.; Gong, S. Q. Electrochim. Acta 2019, 321, 134710.  doi: 10.1016/j.electacta.2019.134710

    123. [123]

      Li, X. J.; Du, D. F.; Zhang, Y.; Xing, W.; Xue, Q. Z.; Yan, Z. F. J. Mater. Chem. A 2017, 5, 15460.  doi: 10.1039/C7TA04001F

    124. [124]

      Zheng, X. L.; Han, X.; Zhao, X. X.; Qi, J.; Ma, Q. X.; Tao, K.; Han, L. Mater. Res. Bull. 2018, 106, 243.  doi: 10.1016/j.materresbull.2018.06.005

    125. [125]

      Tan, Y. T.; Ran, F.; Wang, L. R.; Kong, L. B.; Kang, L. J. Appl. Polym. Sci. 2013, 127, 1544.  doi: 10.1002/app.36781

    126. [126]

      Li, Z. H.; Hu, J. K.; Li, Y. B.; Liu, J. ChemistrySelect 2018, 3, 6737.  doi: 10.1002/slct.201801267

    127. [127]

      Zhang, J.; Yu, Y.; Liu, L.; Wu, Y. Nanoscale 2013, 5, 3052.  doi: 10.1039/c3nr33641g

    128. [128]

      Dai, W. Q.; Ma, L.; Gan, M. Y.; Wang, S. Y.; Sun, X. W.; Wang, H. N.; Zhou, T. Mater. Res. Bull. 2016, 76, 344.  doi: 10.1016/j.materresbull.2015.12.045

    129. [129]

      Tabar, F. A.; Sharif, F.; Mazinani, S. Polymer 2018, 154, 80.  doi: 10.1016/j.polymer.2018.08.005

    130. [130]

      Kim, H. S.; Cook, J. B.; Tolbert, S. H.; Dunn, B. J. Electrochem. Soc. 2015, 162, A5083.  doi: 10.1149/2.0141505jes

    131. [131]

      Rauda, I. E.; Augustyn, V.; Saldarriaga-Lopez, L. C.; Chen, X. Y.; Schelhas, L. T.; Rubloff, G. W.; Dunn, B.; Tolbert, S. H. Adv. Funct. Mater. 2014, 24, 6717.  doi: 10.1002/adfm.201401284

    132. [132]

      Hou, B. H.; Wang, Y. Y.; Guo, J. Z.; Ning, Q. L.; Xi, X. T.; Pang, W. L.; Cao, A. M.; Wang, X. L.; Zhang, J. P.; Wu, X. L. Nanoscale 2018, 10, 9218.  doi: 10.1039/C7NR09674G

    133. [133]

      Wang, J.; Polleux, J.; Lim, J.; Dunn, B. J. Phys. Chem. C 2007, 111, 14925.  doi: 10.1021/jp074464w

    134. [134]

      Fang, G. Z.; Wu, Z. X.; Zhou, J.; Zhu, C. Y.; Cao, X. X.; Lin, T. Q.; Chen, Y. M.; Wang, C.; Pan, A. Q.; Liang, S. Q. Adv. Energy Mater. 2018, 8, 1703155.  doi: 10.1002/aenm.201703155

    135. [135]

      Li, X. Y.; Li, K. K.; Zhu, S. C.; Fan, K.; Lyu, L. L.; Yao, H. M.; Li, Y. Y.; Hu, J. L.; Huang, H. T.; Mai, Y. W.; Goodenough, J. B. Angew. Chem. Int. Ed. 2019, 58, 6239.  doi: 10.1002/anie.201900076

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    5. [5]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    8. [8]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    16. [16]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    17. [17]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    18. [18]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    19. [19]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(15)
  • Abstract views(1419)
  • HTML views(230)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return