Citation: Zhao Ruotong, Han Tianhao, Sun Dayin, Shan Dan, Liu Zhengping, Liang Fuxin. Multifunctional Fe3O4@SiO2Janus Particles[J]. Acta Chimica Sinica, ;2020, 78(9): 945-954. doi: 10.6023/A20060208 shu

Multifunctional Fe3O4@SiO2Janus Particles

  • Corresponding author: Liu Zhengping, lzp@bnu.edu.cn Liang Fuxin, liangfuxin@tsinghua.edu.cn
  • Received Date: 4 June 2020
    Available Online: 13 July 2020

    Fund Project: the National Natural Science Foundation of China 51622308the National Natural Science Foundation of China 51673119Project supported by the National Natural Science Foundation of China (Nos. 51673119, 51622308)

Figures(11)

  • Fe3O4@SiO2 particles were synthesized by a solvothermal method and a classical stber method. Superparamagnetic Fe3O4 was the core, and a sol-gel coating of SiO2 was the shell. After the SiO2 surface was modified with amino groups, benzaldehyde was conjugated to the particles by a Schiff base reaction. The Fe3O4@SiO2 particles were emulsified in paraffin/water as a solid emulsifier to obtain an oil-in-water Pickering emulsion. After cooling the paraffin, the particles were fixed on the surface of the emulsion droplets. The particles were etched in ammonium fluoride aqueous solution, and Janus particles with different structures could be obtained by adjusting the etching time. Via the in situ growth of metal Pt or Ag nanoparticles, superparamagnetic Fe3O4@SiO2-Pt or Fe3O4@SiO2-Ag Janus particles were obtained. The movement of Fe3O4@SiO2-Pt Janus particles was observed due to the catalytic decomposition of hydrogen peroxide aqueous solution. It was found that in the short term, there was a linear motion, while in the long term, the motion direction and trajectory were random. Fe3O4@SiO2-Ag Janus particles were used as magnetic solid surfactants to stabilize the emulsions and catalyze the nitro reduction. About 60% of the surficial area of the Janus particles was modified by phenyl groups, while the remaining 40% was covered with Ag nanoparticles. Under the premise of maintaining the Janus balance, the whole particle became more hydrophobic, which was conducive to the formation of the water-in-oil emulsion. In addition, the Ag side of the Janus particles was towards the aqueous phase, and the opposite hydrophobic side was towards the oil phase. The Janus particles possessed a fixed orientation assembly at the oil-water interface. The assemble membrane possessed Janus characteristics, and it facilitated the stable dispersion of the emulsion and the catalysis. The method has the advantages of a simple principle, capability for mass production, universality and versatility. It is expected that Janus particles will be used to more precisely regulate the zoning with different functional substances.
  • 加载中
    1. [1]

      De Gennes, P. G. Rev. Mod. Phys. 1992, 64, 645.  doi: 10.1103/RevModPhys.64.645

    2. [2]

      Jiang, S.; Granick, S. Janus Particles Synthesis, Self-assembly and Applications, RSC, London, England, 2012.
       

    3. [3]

      Shi, S. Y.; Zhang, L. L.; Zhang, G. L.; Song, X. M.; Sun, D. Y.; Liang, F. X.; Yang, Z. Z. Macromolecules 2020, 53, 2228.  doi: 10.1021/acs.macromol.0c00166

    4. [4]

      Xiang, D.; Jiang, B. Y.; Liang, F. X.; Yan, L. T.; Yang, Z. Z. Macromolecules 2020, 53, 1063.  doi: 10.1021/acs.macromol.9b02388

    5. [5]

      Zhang, H.; Wang, Q.; Jiang, B. Y.; Liang, F. X.; Yang, Z. Z. ACS Appl. Mater. Interfaces 2016, 8, 33250.  doi: 10.1021/acsami.6b12472

    6. [6]

      Zhao, R. T.; Yu, X. T.; Sun, D. Y.; Huang, L. Y.; Liang, F. X.; Liu, Z. P. ACS Appl. Nano. Mater. 2019, 2, 2127.  doi: 10.1021/acsanm.9b00090

    7. [7]

      Zhao, R. T.; Han, T. H.; Sun, D. Y.; Huang, L. Y.; Liang, F. X.; Liu, Z. P. Langmuir 2019, 35, 11435.  doi: 10.1021/acs.langmuir.9b01400

    8. [8]

      Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y. Adv. Mater. 2006, 18, 1152.  doi: 10.1002/adma.200502431

    9. [9]

      Hays, D. A. J. Electrost. 2001, 51-52, 57.
       

    10. [10]

      Wu, B.; Liu, Z. Q.; Liu, X. S.; Liu, G. Q.; Tang, P.; Yuan, W.; Fu, G. L. Nanotechnology 2020, 31, 225301.  doi: 10.1088/1361-6528/ab7649

    11. [11]

      Dolbashian1, C.; Chavez1, B. L.; Bauer, M.; Budi, M.; Andrew, J. S.; Crawford, T. M. J. Phys. D:Appl. Phys. 2020, 53, 195002.  doi: 10.1088/1361-6463/ab71ab

    12. [12]

      Li, L. L.; Bacaksiz, C.; Nakhaee, M.; Pentcheva, R.; Peeters, F. M.; Yagmurcukardes, M. Phys. Rev. B 2020, 101, 134102.  doi: 10.1103/PhysRevB.101.134102

    13. [13]

      Paulus, M.; Degen, P.; Brenner, T.; Tiemeyer, S.; Struth, B.; Tolan, M.; Rehage, H. Langmuir 2010, 26, 15945.  doi: 10.1021/la102882j

    14. [14]

      Xu, Q. A.; Kang, X. W.; Bogomolni, R. A.; Chen, S. W. Langmuir 2010, 26, 14923.  doi: 10.1021/la102540n

    15. [15]

      Ozin, G. A.; Manners, I.; Fournier-Bidoz, S.; Arsenault, A. Adv. Mater. 2005, 17, 3011.  doi: 10.1002/adma.200501767

    16. [16]

      Wang, J. ACS Nano 2009, 3, 4.  doi: 10.1021/nn800829k

    17. [17]

      Cui, L. Y.; Fan, S. S.; Yu, C. L. Acta Chim. Sinica 2017, 75, 967(in Chinese).
       

    18. [18]

      Zhang, B. B.; Ma, C.; Wang, X. G. Acta Chim. Sinica 2015, 73, 441(in Chinese).
       

    19. [19]

      Chen, C. Y.; Yi, J. Q.; Dong, H. Y. Chin. J. Chem. 2015, 33, 527.  doi: 10.1002/cjoc.201500168

    20. [20]

      Liang, F. X.; Yang, Z. Z. Acta Polym. Sin. 2017, (6), 883(in Chinese).
       

    21. [21]

      Tang, L.; Liang, F. X.; Wang, Q. Chin. J. Polym. Sci. 2017, 35, 799(in Chinese).
       

    22. [22]

      Meng, H. Y.; Wan, J. P.; Jing, J. Y. Chin. Chem. Lett. 2020, 31, 253(in Chinese).
       

    23. [23]

      Jing, J. Y.; Yao, X. H.; Yang, Z. Z. Acta Polym. Sin. 2018, 8, 1066(in Chinese).
       

    24. [24]

      Liang, F. X.; Liu, B.; Yang, Z. Z. Polym. Bull. 2016, (9), 45(in Chinese).
       

    25. [25]

      Pickering, S. U. J. Am. Chem. Soc. 1907, 91, 2001.  doi: 10.1039/CT9079102001

    26. [26]

      Binks, B. P. Curr. Opin. Colloid Interface Sci. 2002, 7, 21.  doi: 10.1016/S1359-0294(02)00008-0

    27. [27]

      Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Science 2003, 299, 226.  doi: 10.1126/science.1078616

    28. [28]

      Melle, S.; Lask, M.; Fuller, G. G. Langmuir 2005, 21, 2158.  doi: 10.1021/la047691n

    29. [29]

      Komazaki, Y.; Hirama, H.; Torii, T. J. Appl. Phys. 2015, 117, 154506.  doi: 10.1063/1.4917379

    30. [30]

      Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 2539.  doi: 10.1021/la991081j

    31. [31]

      Liang, F. X.; Zhang, C. L.; Yang, Z. Z. Adv. Mater. 2014, 26, 6944.  doi: 10.1002/adma.201305415

    32. [32]

      Kline, T. R.; Paxton, W. F.; Mallouk, T. E.; Sen, A. Angew. Chem., Int. Ed. 2005, 44, 744.  doi: 10.1002/anie.200461890

    33. [33]

      Laocharoensuk, R.; Burdick, J.; Wang, J. ACS Nano 2008, 2, 1069.  doi: 10.1021/nn800154g

    34. [34]

      Wang, J.; Manesh, K. M. Small 2010, 6, 338.  doi: 10.1002/smll.200901746

    35. [35]

      Gao, W.; Uygun, A.; Wang, J. J. Am. Chem. Soc. 2012, 134, 897.  doi: 10.1021/ja210874s

    36. [36]

      Jonathan, R. H.; Richard, A. L. J.; Anthony, J. R.; Tim, G.; Reza, V.; Ramin, G. Phys. Rev. Lett. 2007, 99, 048102-1.  doi: 10.1103/PhysRevLett.99.048102

    37. [37]

      Ge, Y. E.; Wang, T.; Zheng, M. F.; Jiang, Z. Z.; Wang, S. Nanotechnology 2019, 30, 315702.  doi: 10.1088/1361-6528/ab19c7

    38. [38]

      Zheng, J.; Wang, J. G.; Xiong, Z.; Wan, Z. H.; Zhan, X. J.; Yang, S. J.; Chen, J. W.; Dai, J.; Tang, J. Y. Adv. Funct. Mater. 2019, 29, 1901768.
       

    39. [39]

      Xuan, M. J.; Wu, Z. G.; Shao, J. X.; Dai, L. R.; Si, T. Y.; He, Q. J. Am. Chem. Soc. 2016, 138, 6492.  doi: 10.1021/jacs.6b00902

    40. [40]

      Wu, Y. J.; Wu, Z. G.; Lin, X. K.; He, Q.; Li, J. B. ACS Nano 2012, 6, 10910.  doi: 10.1021/nn304335x

    41. [41]

      Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. Science 2010, 327, 68.  doi: 10.1126/science.1180769

    42. [42]

      Kirillova, A.; Schliebe, C.; Stoychev, G.; Jakob, A.; Lang, H.; Synytska, A. ACS Appl. Mater. Interfaces 2015, 7, 21218.  doi: 10.1021/acsami.5b05224

    43. [43]

      Wang, C.; Yin, H.; Dai, S.; Sun, S. Chem. Mater. 2010, 22, 3277.  doi: 10.1021/cm100603r

    44. [44]

      Valadares, L. F.; Tao, Y. G.; Zacharia, N. S.; Kitaev, V.; Galembeck, F.; Kapral, R.; Ozin, G. A. Small 2010, 6, 565.  doi: 10.1002/smll.200901976

    45. [45]

      Liu, Y. J.; Hu, J. K.; Yu, X. T.; Xu, X. Y.; Gao, Y.; Li, H. M.; Liang, F. X. J. Colloid Interface Sci. 2017, 490, 357.  doi: 10.1016/j.jcis.2016.11.053

    46. [46]

      Xu, X. Q.; Deng, C. H.; Gao, M. X.; Yu, W. J.; Yang, P. Y.; Zhang, X. M. Adv. Mater. 2006, 18, 3289.  doi: 10.1002/adma.200601546

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(19)
  • Abstract views(2340)
  • HTML views(386)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return