Citation: Feng Sheng, Gao Wenbo, Cao Hujun, Guo Jianping, Chen Ping. Advances in the Chemical Looping Ammonia Synthesis[J]. Acta Chimica Sinica, ;2020, 78(9): 916-927. doi: 10.6023/A20060207 shu

Advances in the Chemical Looping Ammonia Synthesis

  • Corresponding author: Guo Jianping, guojianping@dicp.ac.cn
  • Received Date: 4 June 2020
    Available Online: 9 July 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21872137, 21922205) and Youth Innovation Promotion Association Chinese Academy of Sciences (No. 2018213).the National Natural Science Foundation of China 21922205Youth Innovation Promotion Association Chinese Academy of Sciences 2018213the National Natural Science Foundation of China 21872137

Figures(9)

  • Ammonia is not only the main raw material of nitrogen fertilizer, but also a promising energy carrier for the storage and utilization of renewable energy. The fossil fuel-based Haber-Bosch ammonia synthesis industry is an energy-consuming and high CO2-emission process. For the sustainable growth of human society, it is critically important to develop "green" ammonia synthesis processes driven by renewable energies. This scenario motivates growing interests on ammonia synthesis via heterogeneous catalysis, electro-chemical and photo-chemical routes as well as chemical looping process. Chemical looping ammonia synthesis (CLAS) process involves a series of individual reactions which produce ammonia in a distinctly different manner to the catalytic process. The CLAS could be operated under ambient pressure, and the switching on/off operation is flexible. Therefore, CLAS may be more amenable to variable and intermittent operation compared to the conventional catalytic process. More importantly, the competitive adsorption of N2 and H2 or H2O in the catalytic process can be circumvented to a great extent, which opens new opportunities for the design and development of nitrogen carriers especially for low-temperature ammonia production. Because of these unique features, the application of chemical looping technology for ammonia synthesis has been received increasing attention in recent years. The development of high-efficiency nitrogen carriers is the key component for the implementation of CLAS. A wide range of materials including metal nitrides, metal imides, nitride-hydrides and oxynitrides have been evaluated as nitrogen carriers for CLAS. The knowledge accumulated during the past decade will no doubt beneficial for the further optimization and development of nitrogen carriers. This article reviews the research progress in the field of chemical looping ammonia synthesis in recent years, with the focuses on the materials development of nitrogen carriers in CLAS. Furthermore, the challenges and future directions of CLAS are also discussed. With the development of nitrogen carriers and process design, CLAS would potentially play an important role in the green ammonia synthesis as well as the future energy system.
  • 加载中
    1. [1]

      Liu, H. Z. Chem. Ind. Eng. Prog. 2013, 32, 1995(in Chinese).
       

    2. [2]

      Klerke, A.; Christensen, C. H.; Norskov, J. K.; Vegge, T. J. Mater. Chem. 2008, 18, 2304.  doi: 10.1039/b720020j

    3. [3]

      Guo, J. P.; Chen, P. Chem 2017, 3, 709.  doi: 10.1016/j.chempr.2017.10.004

    4. [4]

      Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W. I. F.; Bowen, P. J. Prog. Energy Combust. Sci. 2018, 69, 63.  doi: 10.1016/j.pecs.2018.07.001

    5. [5]

      Smith, C.; Hill, A. K.; Torrente-Murciano, L. Energy Environ. Sci. 2020, 13, 331.  doi: 10.1039/C9EE02873K

    6. [6]

      Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. Nat. Geosci. 2008, 1, 636.  doi: 10.1038/ngeo325

    7. [7]

      Wang, Q. R.; Guo, J. P.; Chen, P. J. Energy Chem. 2019, 36, 25(in Chinese).
       

    8. [8]

      Norskov, J. K.; Chen, J. G. Sustainable Ammonia Synthesis, US Department of Energy, 2016.
       

    9. [9]

      Zeng, L.; Cheng, Z.; Fan, J. A.; Fan, L. S.; Gong, J. L. Nat. Rev. Chem. 2018, 2, 349.  doi: 10.1038/s41570-018-0046-2

    10. [10]

      Gao, W. B.; Guo, J. P.; Wang, P. K.; Wang, Q. R.; Chang, F.; Pei, Q. J.; Zhang, W. J.; Liu, L.; Chen, P. Nat. Energy 2018, 3, 1067.  doi: 10.1038/s41560-018-0268-z

    11. [11]

      Koerts, T.; Vansanten, R. A. J. C. S. Chem. Commun. 1991, 1281.
       

    12. [12]

      Wang, Q. R.; Guo, J. P.; Chen, P. Joule 2020, 4, 705.  doi: 10.1016/j.joule.2020.02.008

    13. [13]

      Zeng, L.; Luo, S. W.; Li, F. X.; Fan, L. S. Sci. China Chem. 2012, 42, 260(in Chinese).
       

    14. [14]

      Chen, S.; Zeng, L.; Mu, R. T.; Xiong, C. Y.; Zhao, Z. J.; Zhao, C. J.; Pei, C. L.; Peng, L. M.; Luo, J.; Fan, L. S.; Gong, J. L. J. Am. Chem. Soc. 2019, 141, 18653.  doi: 10.1021/jacs.9b09235

    15. [15]

      Gao, Y. F.; Wang, X. J.; Liu, J. C.; Huang, C. D.; Zhao, K.; Zhao, Z. L.; Wang, X. D.; Li, F. X. Sci. Adv. 2020, 6, eaaz9339.

    16. [16]

      Tomkins, P.; Ranocchiari, M.; van Bokhoven, J. A. Acc. Chem. Res. 2017, 50, 418.  doi: 10.1021/acs.accounts.6b00534

    17. [17]

      Groothaert, M. H.; Smeets, P. J.; Sels, B. F.; Jacobs, P. A.; Schoonheydt, R. A. J. Am. Chem. Soc. 2005, 127, 1394.  doi: 10.1021/ja047158u

    18. [18]

      Cheng, Z.; Baser, D. S.; Nadgouda, S. G.; Qin, L.; Fan, J. A.; Fan, L. S. ACS Energy Lett. 2018, 3, 1730.  doi: 10.1021/acsenergylett.8b00851

    19. [19]

      Huang, C. D.; Wu, J.; Chen, Y. T.; Tian, M.; Rykov, A. I.; Hou, B. L.; Lin, J.; Chang, C. R.; Pan, X. L.; Wang, J. H.; Wang, A. Q.; Wang, X. D. Commun. Chem. 2018, 1, 55.  doi: 10.1038/s42004-018-0050-y

    20. [20]

      Liu, Y.; Qin, L.; Cheng, Z.; Goetze, J. W.; Kong, F. H.; Fan, J. A.; Fan, L. S. Nat. Commun. 2019, 10, 6.  doi: 10.1038/s41467-018-07858-8

    21. [21]

      Xu, B. J.; Bhawe, Y.; Davis, M. E. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9260.  doi: 10.1073/pnas.1206407109

    22. [22]

      Abanades, S.; Flamant, G. Solar Energy 2006, 80, 1611.  doi: 10.1016/j.solener.2005.12.005

    23. [23]

      Zhu, X.; Imtiaz, Q.; Donat, F.; Muller, C. R.; Li, F. X. Energy Environ. Sci. 2020, 13, 772.  doi: 10.1039/C9EE03793D

    24. [24]

      Duan, Y. F.; Chen, C. Z.; Zhang, J. S.; Wang, X. H.; Wei, J. J. Sci. China Chem. 2020, 50, 337(in Chinese).
       

    25. [25]

      Jennings, J. R. Catalytic ammonia synthesis:Fundamentals and practice, Plenum Press, New York, 1991.
       

    26. [26]

      Frank, A. R. Trans. Faraday Soc. 1908, 4, 099.  doi: 10.1039/tf9080400099

    27. [27]

      Michalsky, R.; Pfromm, P. H. AlChE J. 2012, 58, 3203.  doi: 10.1002/aic.13717

    28. [28]

      Haber, F.; van Oordt, G. Z. Anorg. Chem. 1905, 44, 341.  doi: 10.1002/zaac.19050440122

    29. [29]

      Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K.; Kanatzidis, M. G.; King, P.; Lancaster, K. M.; Lymar, S. V.; Pfromm, P.; Schneider, W. F.; Schrock, R. R. Science 2018, 360, eaar6611.

    30. [30]

      Galvez, M. E.; Halmann, M.; Steinfeld, A. Ind. Eng. Chem. Res. 2007, 46, 2042.  doi: 10.1021/ie061550u

    31. [31]

      Galvez, M. E.; Frei, A.; Halmann, M.; Steinfeld, A. Ind. Eng. Chem. Res. 2007, 46, 2047.  doi: 10.1021/ie061551m

    32. [32]

      Molisani, A. L.; Yoshimura, H. N. Mater. Res. Bull. 2010, 45, 733.  doi: 10.1016/j.materresbull.2010.02.012

    33. [33]

      Wu, Y.; Jiang, G. D.; Zhang, H. B.; Sun, Z.; Gao, Y.; Chen, X. P.; Liu, H. Z.; Tian, H. J.; Lai, Q. H.; Fan, M. H.; Liu, D. Chem. Commun. 2017, 53, 10664.  doi: 10.1039/C7CC04742H

    34. [34]

      Gao, Y.; Wu, Y.; Zhang, Q.; Chen, X. P.; Jiang, G. D.; Liu, D. Int. J. Hydrogen Energy 2018, 43, 16589.  doi: 10.1016/j.ijhydene.2018.07.042

    35. [35]

      Wu, Y.; Gao, Y.; Zhang, Q.; Cai, T.; Chen, X.; Liu, D.; Fan, M. Fuel 2020, 264, 116821.  doi: 10.1016/j.fuel.2019.116821

    36. [36]

      Zhang, Q.; Wu, Y.; Gao, Y.; Chen, X.; Liu, D.; Fan, M. Int. J. Hydrogen Energy 2020, 45, 9903.  doi: 10.1016/j.ijhydene.2020.01.172

    37. [37]

      Michalsky, R.; Pfromm, P. H. Solar Energy 2011, 85, 2642.  doi: 10.1016/j.solener.2011.08.005

    38. [38]

      Michalsky, R.; Pfromm, P. H. J. Phys. Chem. C 2012, 116, 23243.  doi: 10.1021/jp307382r

    39. [39]

      Michalsky, R.; Parman, B. J.; Amanor-Boadu, V.; Pfromm, P. H. Energy 2012, 42, 251.  doi: 10.1016/j.energy.2012.03.062

    40. [40]

      Heidlage, M. G.; Kezar, E. A.; Snow, K. C.; Pfromm, P. H. Ind. Eng. Chem. Res. 2017, 56, 14014.  doi: 10.1021/acs.iecr.7b03173

    41. [41]

      Medford, A. J.; Vojvodic, A.; Hummelshoj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Norskov, J. K. J. Catal. 2015, 328, 36.  doi: 10.1016/j.jcat.2014.12.033

    42. [42]

      Appl, M. Ammonia:Principles and industrial practice, Wiley-VCH, Weinheim, 1999.
       

    43. [43]

      Michalsky, R.; Avram, A. M.; Peterson, B. A.; Pfromm, P. H.; Peterson, A. A. Chem. Sci. 2015, 6, 3965.  doi: 10.1039/C5SC00789E

    44. [44]

      Laassiri, S.; Zeinalipour-Yazdi, C. D.; Catlow, C. R. A.; Hargreaves, J. S. J. Appl. Catal. B 2018, 223, 60.  doi: 10.1016/j.apcatb.2017.04.073

    45. [45]

      Michalsky, R.; Pfromm, P. H.; Steinfeld, A. Interface Focus 2015, 5, 20140084.  doi: 10.1098/rsfs.2014.0084

    46. [46]

      Shan, N.; Chikan, V.; Pfromm, P.; Liu, B. J. Phys. Chem. C 2018, 122, 6109.  doi: 10.1021/acs.jpcc.7b12569

    47. [47]

      Shan, N. N.; Huang, C. R.; Lee, R. T.; Manavi, N.; Xu, L. B.; Chikan, V.; Pfromm, P. H.; Liu, B. ChemCatChem 2020, 12, 2233.  doi: 10.1002/cctc.201902383

    48. [48]

      Jacobsen, C. J. H. Chem. Commun. 2000, 1057.
       

    49. [49]

      Jacobsen, C. J. H.; Dahl, S.; Clausen, B. S.; Bahn, S.; Logadottir, A.; Norskov, J. K. J. Am. Chem. Soc. 2001, 123, 8404.  doi: 10.1021/ja010963d

    50. [50]

      Kojima, R.; Aika, K. Chem. Lett. 2000, 514.

    51. [51]

      McKay, D.; Gregory, D. H.; Hargreaves, J. S. J.; Hunter, S. M.; Sun, X. Chem. Commun. 2007, 3051.
       

    52. [52]

      Hunter, S. M.; McKay, D.; Smith, R. J.; Hargreaves, J. S. J.; Gregory, D. H. Chem. Mater. 2010, 22, 2898.  doi: 10.1021/cm100208a

    53. [53]

      Hunter, S. M.; Gregory, D. H.; Hargreaves, J. S. J.; Richard, M.; Duprez, D.; Bion, N. ACS Catal. 2013, 3, 1719.  doi: 10.1021/cs400336z

    54. [54]

      Zeinalipour-Yazdi, C. D.; Hargreaves, J. S. J.; Catlow, C. R. A. J. Phys. Chem. C 2015, 119, 28368.  doi: 10.1021/acs.jpcc.5b06811

    55. [55]

      Alexander, A. M.; Hargreaves, J. S. J.; Mitchell, C. Top. Catal. 2012, 55, 1046.  doi: 10.1007/s11244-012-9890-3

    56. [56]

      Alexander, A. M.; Hargreaves, J. S. J.; Mitchell, C. Top. Catal. 2013, 56, 1963.  doi: 10.1007/s11244-013-0133-z

    57. [57]

      Roy, D.; Navarro-Vazquez, A.; Schleyer, P. V. R. J. Am. Chem. Soc. 2009, 131, 13045.  doi: 10.1021/ja902980j

    58. [58]

      Swearer, D. F.; Knowles, N. R.; Everitt, H. O.; Halas, N. J. ACS Energy Lett. 2019, 4, 1505.  doi: 10.1021/acsenergylett.9b00860

    59. [59]

      McEnaney, J. M.; Singh, A. R.; Schwalbe, J. A.; Kibsgaard, J.; Lin, J. C.; Cargnello, M.; Jaramillo, T. F.; Nrskov, J. K. Energy Environ. Sci. 2017, 10, 1621.  doi: 10.1039/C7EE01126A

    60. [60]

      Goshome, K.; Miyaoka, H.; Yamamoto, H.; Ichikawa, T.; Ichikawa, T.; Kojima, Y. Mater. Trans. 2015, 56, 410.  doi: 10.2320/matertrans.M2014382

    61. [61]

      Yamaguchi, S.; Ichikawa, T.; Wang, Y. M.; Nakagawa, Y.; Isobe, S.; Kojima, Y.; Miyaoka, H. ACS Omega 2017, 2, 1081.  doi: 10.1021/acsomega.6b00498

    62. [62]

      Yamaguchi, T.; Shinzato, K.; Yamamoto, K.; Wang, Y.; Nakagawa, Y.; Isobe, S.; Ichikawa, T.; Miyaoka, H.; Ichikawa, T. Int. J. Hydrogen Energy 2020, 45, 6806.  doi: 10.1016/j.ijhydene.2019.12.190

    63. [63]

      Gao, W. B.; Guo, J. P.; Chen, P. Chin. J. Chem. 2019, 37, 442.  doi: 10.1002/cjoc.201800586

    64. [64]

      Veser, G. Nat. Energy 2018, 3, 1025.  doi: 10.1038/s41560-018-0293-y

    65. [65]

      Hagen, S.; Barfod, R.; Fehrmann, R.; Jacobsen, C. J. H.; Teunissen, H. T.; Chorkendorff, I. J. Catal. 2003, 214, 327.  doi: 10.1016/S0021-9517(02)00182-3

    66. [66]

      Liu, T.; Temprano, I.; Jenkins, S. J.; King, D. A. J. Chem. Phys. 2013, 139, 184708
       

    67. [67]

      Vojvodic, A.; Medford, A. J.; Studt, F.; Abild-Pedersen, F.; Khan, T. S.; Bligaard, T.; Norskov, J. K. Chem. Phys. Lett. 2014, 598, 108.  doi: 10.1016/j.cplett.2014.03.003

    68. [68]

      Michalsky, R.; Steinfeld, A. Catal. Today 2017, 286, 124.  doi: 10.1016/j.cattod.2016.09.023

    69. [69]

      Bartel, C. J.; Rumptz, J. R.; Weimer, A. W.; Holder, A. M.; Musgrave, C. B. ACS Appl. Mater. Interfaces 2019, 11, 24850.  doi: 10.1021/acsami.9b01242

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(102)
  • Abstract views(4774)
  • HTML views(1092)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return