Citation: Bian Yangshuang, Liu Kai, Guo Yunlong, Liu Yunqi. Research Progress in Functional Stretchable Organic Electronic Devices[J]. Acta Chimica Sinica, ;2020, 78(9): 848-864. doi: 10.6023/A20050197 shu

Research Progress in Functional Stretchable Organic Electronic Devices

  • Corresponding author: Guo Yunlong, guoyunlong@iccas.ac.cn
  • Received Date: 31 May 2020
    Available Online: 8 July 2020

    Fund Project: the National Natural Science Foundation of China 91833306Project supported by the National Natural Science Foundation of China (Nos. 21922511, 51873216, 61890943, 91833306) and the National Key Research and Development Project (No. 2018YFA0703202).the National Natural Science Foundation of China 61890943the National Key Research and Development Project 2018YFA0703202the National Natural Science Foundation of China 51873216the National Natural Science Foundation of China  21922511

Figures(15)

  • Stretchable organic electronic devices are characterized with high mechanical stability, superior electronic stability, low cost, satisfactory biocompatibility, etc., thus having been regarded as an inevitable trend in the development of future electronics. Furthermore, the functional stretchable organic electronic devices provide pathways toward the emerging high-tech fields such as wearable and implantable devices, intelligent medical diagnosis system, software robots, etc. This review focuses on the research advances in functional stretchable organic electronic devices, including stretchable organic transistors (field-effect transistors, phototransistors, memory transistors and sensors), stretchable organic optoelectronic devices (light-emitting diodes, alternating current electroluminescent devices and light-emitting electrochemical cells), stretchable organic energy storage and conversion devices (solar cells, supercapacitors and nanogenerators), stretchable organic sensors (pressure sensors, strain sensors, tactile sensors, temperature sensors, gas sensors and other sensors), stretchable organic memory (resistive memory, magnetic memory and bionic synaptic memory) and other functional stretchable organic electronic devices. Finally, through the analyses of the existing scientific problems and future development of the functional stretchable organic electronic devices, we put forward some suggestions.
  • 加载中
    1. [1]

      Sekitani, T.; Someya, T. Adv. Mater. 2010, 22, 2228.  doi: 10.1002/adma.200904054

    2. [2]

      Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J.; Li, W. X.; Lei, Y. S.; Kim, N.; Wang, C. F.; Zhang, L.; Ward, J. W.; Maralani, A.; Li, X. S.; Durstock, M. F.; Pisano, A.; Lin, Y.; Xu, S. Nat. Electron. 2018, 1, 473.  doi: 10.1038/s41928-018-0116-y

    3. [3]

      Rogers, J. A.; Someya, T.; Huang, Y. G. Science 2010, 327, 1603.  doi: 10.1126/science.1182383

    4. [4]

      Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L. K.; Li, M.; Wang, S. D.; Ma, R.; Jin, S. H.; Kang, Z.; Huang, Y. G.; Rogers, J. A. Adv. Mater. 2013, 25, 2773.  doi: 10.1002/adma.201204426

    5. [5]

      Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. Science 2008, 321, 1468.  doi: 10.1126/science.1160309

    6. [6]

      Xu, S.; Zhang, Y. H.; Jia, L.; Mathewson, K. E.; Jang, K. I.; Kim, J.; Fu, H. R.; Huang, X.; Chava, P.; Wang, R. H.; Bhole, S.; Wang, L. Z.; Na, Y. J.; Guan, Y.; Flavin, M.; Han, Z. S.; Huang, Y. G.; Rogers, J. A. Science 2014, 344, 70.  doi: 10.1126/science.1250169

    7. [7]

      Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Adv. Mater. 2019, 31, 1904765.  doi: 10.1002/adma.201904765

    8. [8]

      Oh, J. Y.; Rondeau-Gagne, S.; Chiu, Y. C.; Chortos, A.; Lissel, F.; Wang, G. J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; Xu, J.; Zhu, C. X.; Gu, X. D.; Bae, W. G.; Kim, Y.; Jin, L. H.; Chung, J. W.; Tok, J. B. H.; Bao, Z. N. Nature 2016, 539, 411.  doi: 10.1038/nature20102

    9. [9]

      Wu, H. C.; Benight, S. J.; Chortos, A.; Lee, W. Y.; Mei, J. G.; To, J. W. F.; Lu, C. E.; He, M. Q.; Tok, J. B. H.; Chen, W. C.; Bao, Z. N. Chem. Mater. 2014, 26, 4544.  doi: 10.1021/cm502271j

    10. [10]

      Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Nano Res. 2019, 12, 1978.  doi: 10.1007/s12274-019-2296-9

    11. [11]

      Liu, K.; Guo, Y. L.; Liu, Y. Q. Sci. China-Technol. Sci. 2019, 62, 1255.  doi: 10.1007/s11431-018-9503-8

    12. [12]

      Guo, Y. L.; Yu, G.; Liu, Y. Q. Adv. Mater. 2010, 22, 4427.  doi: 10.1002/adma.201000740

    13. [13]

      Chortos, A.; Lim, J.; To, J. W. F.; Vosgueritchian, M.; Dusseault, T. J.; Kim, T. H.; Hwang, S.; Bao, Z. N. Adv. Mater. 2014, 26, 4253.  doi: 10.1002/adma.201305462

    14. [14]

      Xu, J.; Wang, S. H.; Wang, G. J. N.; Zhu, C. X.; Luo, S. C.; Jin, L. H.; Gu, X. D.; Chen, S. C.; Feig, V. R.; To, J. W. F.; Rondeau-Gagne, S.; Park, J.; Schroeder, B. C.; Lu, C.; Oh, J. Y.; Wang, Y. M.; Kim, Y. H.; Yan, H.; Sinclair, R.; Zhou, D. S.; Xue, G.; Murmann, B.; Linder, C.; Cai, W.; Tok, J. B. H.; Chung, J. W.; Bao, Z. N. Science 2017, 355, 59.  doi: 10.1126/science.aah4496

    15. [15]

      Xu, J.; Wu, H. C.; Zhu, C. X.; Ehrlich, A.; Shaw, L.; Nikolka, M.; Wang, S. H.; Molina-Lopez, F.; Gu, X. D.; Luo, S. C.; Zhou, D. S.; Kim, Y. H.; Wang, G. J. N.; Gu, K.; Feig, V. R.; Chen, S. C.; Kim, Y.; Katsumata, T.; Zheng, Y. Q.; Yan, H.; Chung, J. W.; Lopez, J.; Murmann, B.; Bao, Z. N. Nat. Materials 2019, 18, 594.  doi: 10.1038/s41563-019-0340-5

    16. [16]

      Khatib, M.; Huynh, T. P.; Deng, Y. F.; Horev, Y. D.; Saliba, W.; Wu, W. W.; Haick, H. Small 2019, 15, 8.
       

    17. [17]

      Lu, C.; Lee, W.-Y.; Gu, X.; Xu, J.; Chou, H.-H.; Yan, H.; Chiu, Y.-C.; He, M.; Matthews, J. R.; Niu, W.; Tok, J. B.-H.; Toney, M. F.; Chen, W.-C.; Bao, Z. Adv. Electron. Mater. 2017, 3, 1600311.

    18. [18]

      Sang, M.; Cao, S. Z.; Lai, W. Y.; Huang, W. Acta Chim. Sinica 2015, 73, 770(in Chinese).
       

    19. [19]

      Wang, G.-J. N.; Shaw, L.; Xu, J.; Kurosawa, T.; Schroeder, B. C.; Oh, J. Y.; Benight, S. J.; Bao, Z. Adv. Funct. Mater. 2016, 26, 7254.

    20. [20]

      Mun, J.; Kang, J. H. O.; Zheng, Y.; Luo, O. O. C.; Wu, H. C.; Matsuhisa, N.; Xu, J.; Wang, G. J. N.; Yun, Y. J.; Xue, G.; Tok, J. B. H.; Bao, Z. N. Adv. Mater. 2019, 31, 1903912.  doi: 10.1002/adma.201903912

    21. [21]

      Sim, K.; Rao, Z. Y.; Kim, H. J.; Thukral, A.; Shim, H.; Yu, C. J. Sci. Adv. 2019, 5, 10.
       

    22. [22]

      Müller, C.; Goffri, S.; Breiby, D. W.; Andreasen, J. W.; Chanzy, H. D.; Janssen, R. A. J.; Nielsen, M. M.; Radano, C. P.; Sirringhaus, H.; Smith, P.; Stingelin-Stutzmann, N. Adv. Funct. Mater. 2007, 17, 2674.  doi: 10.1002/adfm.200601248

    23. [23]

      Peng, R.; Pang, B.; Hu, D. Q.; Chen, M. J.; Zhang, G. B.; Wang, X. H.; Lu, H. B.; Cho, K.; Qiu, L. Z. J. Mater. Chem. C 2015, 3, 3599.  doi: 10.1039/C4TC02476A

    24. [24]

      Mun, J.; Wang, G.-J. N.; Oh, J. Y.; Katsumata, T.; Lee, F. L.; Kang, J.; Wu, H.-C.; Lissel, F.; Rondeau-Gagne, S.; Tok, J. B. H.; Bao, Z. Adv. Funct. Mater. 2018, 28, 1804222.

    25. [25]

      Zhao, Y.; Gumyusenge, A.; He, J.; Qu, G.; McNutt, W. W.; Long, Y.; Zhang, H.; Huang, L.; Diao, Y.; Mei, J. Adv. Funct. Mater. 2018, 28, 1705584.  doi: 10.1002/adfm.201705584

    26. [26]

      Liang, J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X.; Chen, Y.; Pei, Q. ACS Nano 2014, 8, 1590.  doi: 10.1021/nn405887k

    27. [27]

      Liang, J. J.; Li, L.; Chen, D.; Hajagos, T.; Ren, Z.; Chou, S. Y.; Hu, W.; Pei, Q. B. Nat. Commun. 2015, 6, 7647.  doi: 10.1038/ncomms8647

    28. [28]

      Chortos, A.; Koleilat, G. I.; Pfattner, R.; Kong, D. S.; Lin, P.; Nur, R.; Lei, T.; Wang, H. L.; Liu, N.; Lai, Y. C.; Kim, M. G.; Chung, J. W.; Lee, S.; Bao, Z. N. Adv. Mater. 2016, 28, 4441.  doi: 10.1002/adma.201501828

    29. [29]

      Li, L.; Liang, J. J.; Gao, H. E.; Li, Y.; Niu, X. F.; Zhu, X. D.; Xiong, Y.; Pei, Q. B. ACS Appl. Mater. Interfaces 2017, 9, 40523.  doi: 10.1021/acsami.7b12908

    30. [30]

      Savagatrup, S.; Makaram, A. S.; Burke, D. J.; Lipomi, D. J. Adv. Funct. Mater. 2014, 24, 1169.  doi: 10.1002/adfm.201302646

    31. [31]

      Yu, Z. B.; Niu, X. F.; Liu, Z. T.; Pei, Q. B. Adv. Mater. 2011, 23, 3989.  doi: 10.1002/adma.201101986

    32. [32]

      Liang, J.; Li, L.; Niu, X.; Yu, Z.; Pei, Q. Nat. Photonics 2013, 7, 817.  doi: 10.1038/nphoton.2013.242

    33. [33]

      Wu, X.; Lan, S.; Hu, D.; Chen, Q.; Li, E.; Yan, Y.; Chen, H.; Guo, T. J. Mater. Chem. C 2019, 7, 9229.  doi: 10.1039/C9TC02385B

    34. [34]

      Zhong, J.; Wu, X.; Lan, S.; Fang, Y.; Chen, H.; Guo, T. ACS Photonics 2018, 5, 3712.  doi: 10.1021/acsphotonics.8b00729

    35. [35]

      Yang, H.; Liu, Y.; Wu, X.; Yan, Y.; Wang, X.; Lan, S.; Zhang, G.; Chen, H.; Guo, T. Adv. Electron. Mater. 2019, 1900864.
       

    36. [36]

      Kang, M.; Lee, S. A.; Jang, S.; Hwang, S.; Lee, S. K.; Bae, S.; Hong, J. M.; Lee, S. H.; Jeong, K. U.; Lim, J. A.; Kim, T. W. ACS Appl. Mater. Interfaces 2019, 11, 22575.  doi: 10.1021/acsami.9b03564

    37. [37]

      Han, S. T.; Zhou, Y.; Roy, V. A. L. Adv. Mater. 2013, 25, 5425.  doi: 10.1002/adma.201301361

    38. [38]

      Hong, S. Y.; Kim, M. S.; Park, H.; Jin, S. W.; Jeong, Y. R.; Kim, J. W.; Lee, Y. H.; Sun, L.; Zi, G.; Ha, J. S. Adv. Funct. Mater. 2019, 29, 9.
       

    39. [39]

      Zhu, C. X.; Chortos, A.; Wang, Y.; Pfattner, R.; Lei, T.; Hinckley, A. C.; Pochorovski, I.; Yan, X. Z.; To, J. W. F.; Oh, J. Y.; Tok, J. B. H.; Bao, Z. N.; Murmann, B. Nat. Electron. 2018, 1, 183.  doi: 10.1038/s41928-018-0041-0

    40. [40]

      Zhu, C.; Wu, H. C.; Nyikayaramba, G.; Bao, Z. N.; Murmann, B. IEEE Electron Device Lett. 2019, 40, 1630.  doi: 10.1109/LED.2019.2933838

    41. [41]

      Zang, Y.; Zhang, F.; Huang, D.; Di, C.-a.; Zhu, D. Adv. Mater. 2015, 27, 7979.  doi: 10.1002/adma.201503542

    42. [42]

      Shim, H.; Sim, K.; Ershad, F.; Yang, P. Y.; Thukral, A.; Rao, Z.; Kim, H. J.; Liu, Y. H.; Wang, X.; Gu, G. Y.; Gao, L.; Wang, X. R.; Chai, Y.; Yu, C. J. Sci. Adv. 2019, 5, 11.
       

    43. [43]

      Molina-Lopez, F.; Gao, T. Z.; Kraft, U.; Zhu, C.; Ohlund, T.; Pfattner, R.; Feig, V. R.; Kim, Y.; Wang, S.; Yun, Y.; Bao, Z. Nat. Commun. 2019, 10, 2676.  doi: 10.1038/s41467-019-10569-3

    44. [44]

      Matsuhisa, N.; Jiang, Y.; Liu, Z. Y.; Chen, G.; Wan, C. J.; Kim, Y.; Kang, J.; Tran, H.; Wu, H. C.; You, I.; Bao, Z. N.; Chen, X. D. Adv. Electron. Mater. 2019, 5, 1900347.  doi: 10.1002/aelm.201900347

    45. [45]

      Li, Y. Z.; Wang, N. X.; Yang, A. N.; Ling, H. F.; Yan, F. Adv. Electron. Mater. 2019, 5, 7.
       

    46. [46]

      Yin, D.; Feng, J.; Ma, R.; Liu, Y. F.; Zhang, Y. L.; Zhang, X. L.; Bi, Y. G.; Chen, Q. D.; Sun, H. B. Nat. Commun. 2016, 7, 11573.  doi: 10.1038/ncomms11573

    47. [47]

      Kim, T. H.; Lee, C. S.; Kim, S.; Hur, J.; Lee, S.; Shin, K. W.; Yoon, Y. Z.; Choi, M. K.; Yang, J.; Kim, D. H.; Hyeon, T.; Park, S.; Hwang, S. ACS Nano 2017, 11, 5992.  doi: 10.1021/acsnano.7b01894

    48. [48]

      Hu, D.; Xu, X.; Miao, J.; Gidron, O.; Meng, H. Materials 2018, 11, 184.  doi: 10.3390/ma11020184

    49. [49]

      Wang, X.; Sun, J.; Dong, L.; Lv, C.; Zhang, K.; Shang, Y.; Yang, T.; Wang, J.; Shan, C.-X. Nano Energy 2019, 58, 410.  doi: 10.1016/j.nanoen.2019.01.058

    50. [50]

      Shin, H.; Sharma, B. K.; Lee, S. W.; Lee, J.-B.; Choi, M.; Hu, L.; Park, C.; Choi, J. H.; Kim, T. W.; Ahn, J.-H. ACS Appl. Mater. Interfaces 2019, 11, 14222.  doi: 10.1021/acsami.8b22135

    51. [51]

      Wang, J. X.; Lee, P. S. Nanophotonics 2017, 6, 435.  doi: 10.1515/nanoph-2016-0002

    52. [52]

      Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Science 2016, 351, 1071.  doi: 10.1126/science.aac5082

    53. [53]

      Tan, Y. J.; Godaba, H.; Chen, G.; Tan, S. T. M.; Wan, G.; Li, G.; Lee, P. M.; Cai, Y.; Li, S.; Shepherd, R. F.; Ho, J. S.; Tee, B. C. K. Nat. Materials 2020, 19, 182.  doi: 10.1038/s41563-019-0548-4

    54. [54]

      Chou, H. H.; Nguyen, A.; Chortos, A.; To, J. W. F.; Lu, C.; Mei, J. G.; Kurosawa, T.; Bae, W. G.; Tok, J. B. H.; Bao, Z. N. Nat. Commun. 2015, 6, 8011.  doi: 10.1038/ncomms9011

    55. [55]

      Yin, D.; Jiang, N.-R.; Liu, Y.-F.; Zhang, X.-L.; Li, A.-W.; Feng, J.; Sun, H.-B. Light-Sci. Appl. 2018, 7, 262.
       

    56. [56]

      An, T. C.; Ling, Y. Z.; Gong, S.; Zhu, B. W.; Zhao, Y. M.; Dong, D. S.; Yap, L. W.; Wang, Y.; Cheng, W. L. Adv. Mater. Technol. 2019, 4, 1800473.  doi: 10.1002/admt.201800473

    57. [57]

      Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie, X. M.; Zhi, C. Y. Nat. Commun. 2015, 6, 10310.  doi: 10.1038/ncomms10310

    58. [58]

      Park, S.; Lee, H.; Kim, Y. J.; Lee, P. S. NPG Asia Mater. 2018, 10, 11.
       

    59. [59]

      Siddiqui, S.; Lee, H. B.; Kim, D.-I.; Le Thai, D.; Hanif, A.; Lee, N.-E. Adv. Energy Mater. 2019, 9, 1701520.
       

    60. [60]

      Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Sci. Adv. 2017, 3, 1700015.  doi: 10.1126/sciadv.1700015

    61. [61]

      Zou, Y.; Tan, P.; Shi, B.; Ouyang, H.; Jiang, D.; Liu, Z.; Li, H.; Yu, M.; Wang, C.; Qu, X.; Zhao, L.; Fan, Y.; Wang, Z. L.; Li, Z. Nat. Commun. 2019, 10, 2695.  doi: 10.1038/s41467-019-10433-4

    62. [62]

      Zhao, S.; Zhu, R. Acta Chim. Sinica 2019, 77, 1250(in Chinese).
       

    63. [63]

      Qian, X.; Su, M.; Li, F. Y.; Song, Y. L. Acta Chim. Sinica 2016, 74, 565(in Chinese).
       

    64. [64]

      Jian, M. Q.; Xia, K. L.; Wang, Q.; Yin, Z.; Wang, H. M.; Wang, C. Y.; Xie, H. H.; Zhang, M. C.; Zhang, Y. Y. Adv. Funct. Mater. 2017, 27, 1606066.  doi: 10.1002/adfm.201606066

    65. [65]

      Liao, X. Q.; Wang, W. S.; Wang, L.; Tang, K.; Zheng, Y. J. ACS Appl. Mater. Interfaces 2019, 11, 2431.  doi: 10.1021/acsami.8b20245

    66. [66]

      Chen, H. T.; Su, Z. M.; Song, Y.; Cheng, X. L.; Chen, X. X.; Meng, B.; Song, Z. J.; Chen, D. M.; Zhang, H. X. Adv. Funct. Mater. 2017, 27, 1604434.  doi: 10.1002/adfm.201604434

    67. [67]

      Boutry, C. M.; Kaizawa, Y.; Schroeder, B. C.; Chortos, A.; Legrand, A.; Wang, Z.; Chang, J.; Fox, P.; Bao, Z. N. Nat. Electron. 2018, 1, 314.  doi: 10.1038/s41928-018-0071-7

    68. [68]

      Cataldi, P.; Dussoni, S.; Ceseracciu, L.; Maggiali, M.; Natale, L.; Metta, G.; Athanassiou, A.; Bayer, I. S. Adv. Sci. 2018, 5, 10.
       

    69. [69]

      Wang, X. D.; Zhang, Y. F.; Zhang, X. J.; Huo, Z. H.; Li, X. Y.; Que, M. L.; Peng, Z. C.; Wang, H.; Pan, C. F. Adv. Mater. 2018, 30, 8.
       

    70. [70]

      Ren, Z. W.; Nie, J. H.; Xu, L.; Jiang, T.; Chen, B. D.; Chen, X. Y.; Wang, Z. L. Adv. Funct. Mater. 2018, 28, 9.
       

    71. [71]

      Trung, T. Q.; Dang, T. M. L.; Ramasundaram, S.; Toi, P. T.; Park, S. Y.; Lee, N. E. ACS Appl. Mater. Interfaces 2019, 11, 2317.  doi: 10.1021/acsami.8b19425

    72. [72]

      Trung, T. Q.; Ramasundaram, S.; Hwang, B. U.; Lee, N. E. Adv. Mater. 2016, 28, 502.  doi: 10.1002/adma.201504441

    73. [73]

      Song, Z. L.; Huang, Z.; Liu, J. Y.; Hu, Z. X.; Zhang, J. B.; Zhang, G. Z.; Yi, F.; Jiang, S. L.; Lian, J. B.; Yan, J.; Zang, J. F.; Liu, H. ACS Sens. 2018, 3, 1048.  doi: 10.1021/acssensors.8b00263

    74. [74]

      Park, J.; Kim, J.; Kim, S. Y.; Cheong, W. H.; Jang, J.; Park, Y. G.; Na, K.; Kim, Y. T.; Heo, J. H.; Lee, C. Y.; Lee, J. H.; Bien, F.; Park, J. U. Sci. Adv. 2018, 4, 9841.  doi: 10.1126/sciadv.aap9841

    75. [75]

      Wang, Z.; Wang, X.; Li, M.; Gao, Y.; Hu, Z.; Nan, T.; Liang, X.; Chen, H.; Yang, J.; Cash, S.; Sun, N.-X. Adv. Mater. 2016, 28, 9370.  doi: 10.1002/adma.201602910

    76. [76]

      Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Nat. Commun. 2018, 9, 244.  doi: 10.1038/s41467-017-02685-9

    77. [77]

      Hsu, L. C.; Shih, C. C.; Hsieh, H. C.; Chiang, Y. C.; Wu, P. H.; Chueh, C. C.; Chen, W. C. Polym. Chem. 2018, 9, 5145.  doi: 10.1039/C8PY01283K

    78. [78]

      Ban, C. Y.; Wang, X. J.; Zhou, Z.; Mao, H. W.; Cheng, S.; Zhang, Z. P.; Liu, Z. D.; Li, H.; Liu, J. Q.; Huang, W. Sci. Rep. 2019, 9, 7.  doi: 10.1038/s41598-018-37029-0

    79. [79]

      Gui, Q. Y.; Zhou, Y.; Liao, S. L.; He, Y. L.; Tang, Y. F.; Wang, Y. P. Soft Matter 2019, 15, 393.  doi: 10.1039/C8SM02234H

    80. [80]

      Yang, M. H.; Zhao, X. L.; Tang, Q. X.; Cui, N.; Wang, Z. Q.; Tong, Y. H.; Liu, Y. C. Nanoscale 2018, 10, 18135.  doi: 10.1039/C8NR05336G

    81. [81]

      van de Burgt, Y.; Lubberman, E.; Fuller, E. J.; Keene, S. T.; Faria, G. C.; Agarwal, S.; Marinella, M. J.; Talin, A. A.; Salleo, A. Nat. Materials 2017, 16, 414.  doi: 10.1038/nmat4856

    82. [82]

      Zhou, L.; Mao, J. Y.; Ren, Y.; Han, S. T.; Roy, V. A. L.; Zhou, Y. Small 2018, 14, 1703126.  doi: 10.1002/smll.201703126

    83. [83]

      Besse, N.; Rosset, S.; Zarate, J. J.; Shea, H. Adv. Mater. Technol. 2017, 2, 1700102.  doi: 10.1002/admt.201700102

    84. [84]

      Wei, J.; Wang, F.; Zhang, L. ACS Appl. Mater. Interfaces 2018, 10, 29161.  doi: 10.1021/acsami.8b09826

    85. [85]

      Zhao, P.; Xu, B.; Zhang, Y.; Li, B.; Chen, H. ACS Appl. Mater. Interfaces 2020, 12, 15716.  doi: 10.1021/acsami.0c01179

    86. [86]

      Liu, Y. R. N.; Yang, T. Y.; Zhang, Y. Y.; Qu, G.; Wei, S. S.; Liu, Z.; Kong, T. T. Adv. Mater. 2019, 31, 1902783.  doi: 10.1002/adma.201902783

    87. [87]

      Roudjane, M.; Bellemare-Rousseau, S.; Khalil, M.; Gorgutsa, S.; Miled, A.; Messaddeq, Y. Sensors 2018, 18, 973.  doi: 10.3390/s18040973

    88. [88]

      Li, Y.; Tian, X.; Gao, S.-P.; Jing, L.; Li, K.; Yang, H.; Fu, F.; Lee, J. Y.; Guo, Y.-X.; Ho, J. S.; Chen, P.-Y. Adv. Funct. Mater. 2020, 30, 1907451.  doi: 10.1002/adfm.201907451

    89. [89]

      Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J.; Lei, T.; Kwon, S. K.; Kim, Y.; Foudeh, A. M.; Ehrlich, A.; Gasperini, A.; Yun, Y.; Murmann, B.; Tok, J. B. H.; Bao, Z. N. Nature 2018, 555, 83.  doi: 10.1038/nature25494

    90. [90]

      Oh, J. Y.; Bao, Z. N. Adv. Sci. 2019, 6, 1900186.
       

    91. [91]

      Biswas, S.; Schoeberl, A.; Hao, Y. F.; Reiprich, J.; Stauden, T.; Pezoldt, J.; Jacobs, H. O. Nat. Commun. 2019, 10, 8.  doi: 10.1038/s41467-018-07894-4

    92. [92]

      Zhang, S. X.; Shao, X. F. Acta Chim. Sinica 2018, 76, 531(in Chinese).
       

  • 加载中
    1. [1]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    13. [13]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    16. [16]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(84)
  • Abstract views(4272)
  • HTML views(1066)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return