Citation: Yang Zhongjie, Zhang Xiaofei, Shi Yanan, Long Chang, Zhang Binhao, Yan Shuhao, Chang Lin, Tang Zhiyong. Synthesis of Two-dimensional Hydrophobic Copper-based Nanosheets and Their Application in Catalytic Oxidation of Sulfides[J]. Acta Chimica Sinica, ;2020, 78(9): 980-988. doi: 10.6023/A20050165 shu

Synthesis of Two-dimensional Hydrophobic Copper-based Nanosheets and Their Application in Catalytic Oxidation of Sulfides

  • Corresponding author: Tang Zhiyong, zytang@nanoctr.cn
  • Received Date: 12 May 2020
    Available Online: 9 June 2020

    Fund Project: the Strategic Priority Research Program of Chinese Academy of Sciences XDB36000000Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), National Key Basic Research Program of China (No. 2016YFA0200700), National Natural Science Foundation of China (Nos. 21890381, 21721002), Frontier Science Key Project of Chinese Academy of Sciences (No. QYZDJ-SSW-SLH038), and K.C.Wong Education FoundationFrontier Science Key Project of Chinese Academy of Sciences QYZDJ-SSW-SLH038National Key Basic Research Program of China 2016YFA0200700National Natural Science Foundation of China 21890381National Natural Science Foundation of China 21721002

Figures(6)

  • Two-dimensional nanomaterials have received extensive attention because of their unique physicochemical properties. However, bottom-up synthesis of two-dimensional (2D) stable nanomaterials still remains great challenge. In this work, a novel 2D metal-organic (Cu-BDT) nanosheet is constructed at room temperature by coordinative self-assembly, namely, using monovalent copper ion as the metal precursor and 1,4-benzenedithiol as organic ligand. As-synthesized Cu-BDT nanosheets are fully characterized by various techniques including powder-diffraction of X-rays (P-XRD), Fourier transform infrared spectrometer (FT-IR), Raman spectra (Raman), scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometer (ICP-OES) and contact angle test. The catalytic result verifies that the Cu-BDT nanosheet surfaces possess abundant active sites and good hydrophobicity, which facilitate oxidation of sulfides into sulfoxide compounds.
  • 加载中
    1. [1]

      Cao, F.-F.; Zhao, M.-T.; Yu, Y.-F.; Chen, B.; Huang, Y.; Yang, J.; Cao, X.-H.; Lu, Q.-P.; Zhang, X.; Zhang, Z.-C.; Tan, C.-L.; Zhang, H. J. Am. Chem. Soc. 2016, 138, 6924.  doi: 10.1021/jacs.6b02540

    2. [2]

      El-Kady, M. F.; Veronica, S.; Sergey, D.; Richard, B. K. Science 2012, 335, 1326.  doi: 10.1126/science.1216744

    3. [3]

      Wu, C.-Z.; Lu, X.-L.; Peng, L.-L.; Xu, K.; Peng, X.; Huang, J.-L.; Yu, G.-H.; Xie, Y. Nat. Comm. 2013, 4, 3431.
       

    4. [4]

      Yang, X.-W.; Cheng, C.; Wang, Y.-F.; Qiu, L.; Li, D. Science 2013, 341, 6145.
       

    5. [5]

      Huang, W.; Li, Y.-G. Chinese J. Chem. 2019, 37, 12.
       

    6. [6]

      Wang, H.-T.; Yuan, H.-T.; Seung, S. H.; Li, Y.-B.; Cui, Y. Chem. Soc. Rev. 2015, 44, 2664.  doi: 10.1039/C4CS00287C

    7. [7]

      Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.-F.; Tian, Z.-Q.; Bao, X.-H. Nat. Nanotech. 2016, 11, 218.  doi: 10.1038/nnano.2015.340

    8. [8]

      Song, F.; Hu, X.-L. J. Am. Chem. Soc. 2018, 136, 16481.
       

    9. [9]

      Song, F.; Hu, X.-L. Nat. Comm. 2014, 5, 5447.  doi: 10.1038/ncomms6447

    10. [10]

      Zheng, Y.; Yan, J.; Lei, G.; Mietek, J.; Qiao, S.-Z. Angew. Chem., Int. Ed. 2013, 125, 3192.  doi: 10.1002/ange.201209548

    11. [11]

      Yu, J.; Yang, Y.-S.; Wei, M. Acta Chim. Sinica 2019, 77, 1129(in Chinese).
       

    12. [12]

      Jiao, C.-L.; Wang, W.; Liu, J.; Yuan, Y.-X.; Xu, M.-M.; Yao, J.-L. Acta Chim. Sinica 2018, 76, 526(in Chinese).
       

    13. [13]

      Naguib, M.; Gogotsi, Y. Acc. Chem. Res. 2014, 48, 128.
       

    14. [14]

      Niu, L.-Y.; Coleman, J. N.; Zhang, H.; Shin, H.; Chhowalla, M.; Zheng, Z.-J. Small 2016, 12, 272.  doi: 10.1002/smll.201502207

    15. [15]

      Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.  doi: 10.1038/nature04969

    16. [16]

      Sakamoto, J.; Jeroen, v-H.; Lukin, O.; Schlüter, A.-D. Angew. Chem., Int. Ed. 2009, 48, 1030.  doi: 10.1002/anie.200801863

    17. [17]

      Huang, X.; Zeng, Z.-Y.; Zhang, H. Chem. Soc. Rev. 2013, 42, 1934.  doi: 10.1039/c2cs35387c

    18. [18]

      Chu, W.-Y.; Tang, X.; Li, Z.; Lin, J.-C.; Qian, J.-S. Acta Chim. Sinica 2018, 76, 549(in Chinese).
       

    19. [19]

      Sakamoto, R.; Takada, K.; Pal, T.; Maeda, H.; Kambecd, T.; Nishiharaa, H. Chem. Coummn. 2017, 53, 5781.  doi: 10.1039/C7CC00810D

    20. [20]

      Dong, R.-H.; Pfeffermann, M.; Liang, H.-W.; Zheng, Z.-K.; Zhu, X.; Zhang, J.; Feng, X.-L. Angew. Chem., Int. Ed. 2015, 54, 12058.  doi: 10.1002/anie.201506048

    21. [21]

      Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasak, S.; Kim, J.; Nakazato.; Takat, M.; Nishihara, H. J. Am. Chem. Soc. 2013, 135, 2462.  doi: 10.1021/ja312380b

    22. [22]

      Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C. J. Am. Chem. Soc. 2014, 137, 118.
       

    23. [23]

      Maeda, H.; Sakamoto, R.; Nishihara, H. Langmuir 2016, 32, 2527.  doi: 10.1021/acs.langmuir.6b00156

    24. [24]

      Sugimori, A.; Akiyama, T.; Kajitani, M.; Sugiyama, T. B. Chem. Soc. Jpn. 1999, 72, 879.  doi: 10.1246/bcsj.72.879

    25. [25]

      Dong R.-H., Pfeffermann M., Liang H.-W., Zheng Z.-K, Zhu X., Zhang J., Feng X.-L.. Angew. Chem., Int. -Ed.[J]. , 2015,5412058.

    26. [26]

      Huang, X.; Sheng, P.; Tu, Z.-Y.; Zhang, F.-J.; Wang, J. H.; Geng, H.; Zou, Y.; Di, C.-A.; Yi, Y.-P.; Sun, Y.-M.; Xu, W.; Zhu, D.-B. Nat. Comm. 2015, 6, 7408.  doi: 10.1038/ncomms8408

    27. [27]

      Huang, X.; Li, H.-S.; Tu, Z.-Y.; Liu, L.-Y.; Wu, X.-Y.; Chen, J.; Liang, Y.-Y.; Zou, Y.; Yi, Y.-P.; Zhu, D.-B. J. Am. Chem. Soc. 2018, 140, 15153.  doi: 10.1021/jacs.8b07921

    28. [28]

      Takada, K.; Sakamoto, R.; Yi, S.-T.; Katagiri, S.; Kambe, T.; Nishihara, H. J. Am. Chem. Soc. 2015, 137, 4681.  doi: 10.1021/ja510788b

    29. [29]

      Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H. J. Am. Chem. Soc. 2013, 135, 7438.  doi: 10.1021/ja402727d

    30. [30]

      Bauer, T.; Zheng, Z.-K.; Renn, A.; Enning, R.; Stemmer, A.; Sakamoto, J.; Schlüter, A. D. J. Am. Chem. Soc. 2011, 123, 8025.
       

    31. [31]

      Yang, R.-T.; Maldonado, A. J.; Yang, F.-H. Science 2003, 301, 79.  doi: 10.1126/science.1085088

    32. [32]

      Li, T.-F.; Zhang, W.; Chen, W.; Miras, H. N.; Song, Y.-F. ChemCatChem 2017, 10, 188.
       

    33. [33]

      Doherty, S.; Knight, J. G.; Carroll, M. A.; Ellison, J. R.; Hobson, S. J.; Stevens, S.; Hardacre, C.; Goodrichb, P. Green Chem. 2015, 17, 1559.  doi: 10.1039/C4GC01770F

    34. [34]

      Nisar, A.; Zhuang, J.; Wang, X. Adv. Mater. 2011, 23, 1130.  doi: 10.1002/adma.201003520

    35. [35]

      Nisar, A.; Lu, Y.; Zhuang, J.; Wang, X. Angew. Chem., Int. Ed. 2011, 123, 3245.  doi: 10.1002/ange.201006155

    36. [36]

      Schrauzer, G.; Prakash, H. Inorg. Chem. 1975, 14, 1200.  doi: 10.1021/ic50147a046

    37. [37]

      Hu, C.; Hu, C.-Y.; Ma, Q.-Y.; Hung, S.-F.; Chen, Z.-N.; Ou, D.-H.; Ren, B.; Chen, C.-M.; Fu, G.; Zheng, N.-F. Chem 2017, 3, 122.  doi: 10.1016/j.chempr.2017.05.011

    38. [38]

      Gaarenstroom, S.; Winograd, N. J. Chem. Phys. 1977, 67, 3500.
       

    39. [39]

      Rupp, H.; Weser, U. BBA-Protein Structure 1976, 446, 151.  doi: 10.1016/0005-2795(76)90107-0

    40. [40]

      Poulston, S.; Parlett, P. M.; Stone, P.; Bowker, M. Surf. Interface. Anal. 1996, 24, 811.  doi: 10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z

    41. [41]

      Zhang, Z.; Long, J.-L.; Yang, L.-F.; Chen, W.-K. Chem. Sci. 2011, 2, 1826.  doi: 10.1039/C1SC00257K

    42. [42]

      Sandhyarani, N.; Pradeep, T. J. Mater. Chem. 2001, 11, 1294.  doi: 10.1039/b009837j

    43. [43]

      Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H.-T. Science 2019, 366, 226.  doi: 10.1126/science.aay1844

    44. [44]

      Guo, X.-K.; Xu, M.-X.; She, M.-Y.; Zhu, Y.; Shi, T.-T.; Chen, Z.-X.; Peng, L.-M.; Guo, X.-F.; Lin, M.; Ding, W.-P. Angew. Chem., Int. Ed. 2020, 59, 2606.  doi: 10.1002/anie.201911749

    45. [45]

      Tan, B.; Wu, W.-H.; Liu, X.; Zhang, Y.-B.; Quan, X.; Zhao, H.-M. Nanoscale 2017, 9, 18699.  doi: 10.1039/C7NR05541B

    46. [46]

      Xiao, F.-S.; Sun, J.-M.; Meng, X.-J.; Yu, R.-B.; Yuan, H.-M.; Xu, J.-N.; Song, T.-Y.; Jiang, D.-Z.; Xu, R.-R. J. Catal. 2001, 199, 273.  doi: 10.1006/jcat.2001.3166

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    9. [9]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    20. [20]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

Metrics
  • PDF Downloads(15)
  • Abstract views(3695)
  • HTML views(396)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return