Citation: Yang Zhongjie, Zhang Xiaofei, Shi Yanan, Long Chang, Zhang Binhao, Yan Shuhao, Chang Lin, Tang Zhiyong. Synthesis of Two-dimensional Hydrophobic Copper-based Nanosheets and Their Application in Catalytic Oxidation of Sulfides[J]. Acta Chimica Sinica, ;2020, 78(9): 980-988. doi: 10.6023/A20050165 shu

Synthesis of Two-dimensional Hydrophobic Copper-based Nanosheets and Their Application in Catalytic Oxidation of Sulfides

  • Corresponding author: Tang Zhiyong, zytang@nanoctr.cn
  • Received Date: 12 May 2020
    Available Online: 9 June 2020

    Fund Project: the Strategic Priority Research Program of Chinese Academy of Sciences XDB36000000Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), National Key Basic Research Program of China (No. 2016YFA0200700), National Natural Science Foundation of China (Nos. 21890381, 21721002), Frontier Science Key Project of Chinese Academy of Sciences (No. QYZDJ-SSW-SLH038), and K.C.Wong Education FoundationFrontier Science Key Project of Chinese Academy of Sciences QYZDJ-SSW-SLH038National Key Basic Research Program of China 2016YFA0200700National Natural Science Foundation of China 21890381National Natural Science Foundation of China 21721002

Figures(6)

  • Two-dimensional nanomaterials have received extensive attention because of their unique physicochemical properties. However, bottom-up synthesis of two-dimensional (2D) stable nanomaterials still remains great challenge. In this work, a novel 2D metal-organic (Cu-BDT) nanosheet is constructed at room temperature by coordinative self-assembly, namely, using monovalent copper ion as the metal precursor and 1,4-benzenedithiol as organic ligand. As-synthesized Cu-BDT nanosheets are fully characterized by various techniques including powder-diffraction of X-rays (P-XRD), Fourier transform infrared spectrometer (FT-IR), Raman spectra (Raman), scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometer (ICP-OES) and contact angle test. The catalytic result verifies that the Cu-BDT nanosheet surfaces possess abundant active sites and good hydrophobicity, which facilitate oxidation of sulfides into sulfoxide compounds.
  • 加载中
    1. [1]

      Cao, F.-F.; Zhao, M.-T.; Yu, Y.-F.; Chen, B.; Huang, Y.; Yang, J.; Cao, X.-H.; Lu, Q.-P.; Zhang, X.; Zhang, Z.-C.; Tan, C.-L.; Zhang, H. J. Am. Chem. Soc. 2016, 138, 6924.  doi: 10.1021/jacs.6b02540

    2. [2]

      El-Kady, M. F.; Veronica, S.; Sergey, D.; Richard, B. K. Science 2012, 335, 1326.  doi: 10.1126/science.1216744

    3. [3]

      Wu, C.-Z.; Lu, X.-L.; Peng, L.-L.; Xu, K.; Peng, X.; Huang, J.-L.; Yu, G.-H.; Xie, Y. Nat. Comm. 2013, 4, 3431.
       

    4. [4]

      Yang, X.-W.; Cheng, C.; Wang, Y.-F.; Qiu, L.; Li, D. Science 2013, 341, 6145.
       

    5. [5]

      Huang, W.; Li, Y.-G. Chinese J. Chem. 2019, 37, 12.
       

    6. [6]

      Wang, H.-T.; Yuan, H.-T.; Seung, S. H.; Li, Y.-B.; Cui, Y. Chem. Soc. Rev. 2015, 44, 2664.  doi: 10.1039/C4CS00287C

    7. [7]

      Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.-F.; Tian, Z.-Q.; Bao, X.-H. Nat. Nanotech. 2016, 11, 218.  doi: 10.1038/nnano.2015.340

    8. [8]

      Song, F.; Hu, X.-L. J. Am. Chem. Soc. 2018, 136, 16481.
       

    9. [9]

      Song, F.; Hu, X.-L. Nat. Comm. 2014, 5, 5447.  doi: 10.1038/ncomms6447

    10. [10]

      Zheng, Y.; Yan, J.; Lei, G.; Mietek, J.; Qiao, S.-Z. Angew. Chem., Int. Ed. 2013, 125, 3192.  doi: 10.1002/ange.201209548

    11. [11]

      Yu, J.; Yang, Y.-S.; Wei, M. Acta Chim. Sinica 2019, 77, 1129(in Chinese).
       

    12. [12]

      Jiao, C.-L.; Wang, W.; Liu, J.; Yuan, Y.-X.; Xu, M.-M.; Yao, J.-L. Acta Chim. Sinica 2018, 76, 526(in Chinese).
       

    13. [13]

      Naguib, M.; Gogotsi, Y. Acc. Chem. Res. 2014, 48, 128.
       

    14. [14]

      Niu, L.-Y.; Coleman, J. N.; Zhang, H.; Shin, H.; Chhowalla, M.; Zheng, Z.-J. Small 2016, 12, 272.  doi: 10.1002/smll.201502207

    15. [15]

      Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.  doi: 10.1038/nature04969

    16. [16]

      Sakamoto, J.; Jeroen, v-H.; Lukin, O.; Schlüter, A.-D. Angew. Chem., Int. Ed. 2009, 48, 1030.  doi: 10.1002/anie.200801863

    17. [17]

      Huang, X.; Zeng, Z.-Y.; Zhang, H. Chem. Soc. Rev. 2013, 42, 1934.  doi: 10.1039/c2cs35387c

    18. [18]

      Chu, W.-Y.; Tang, X.; Li, Z.; Lin, J.-C.; Qian, J.-S. Acta Chim. Sinica 2018, 76, 549(in Chinese).
       

    19. [19]

      Sakamoto, R.; Takada, K.; Pal, T.; Maeda, H.; Kambecd, T.; Nishiharaa, H. Chem. Coummn. 2017, 53, 5781.  doi: 10.1039/C7CC00810D

    20. [20]

      Dong, R.-H.; Pfeffermann, M.; Liang, H.-W.; Zheng, Z.-K.; Zhu, X.; Zhang, J.; Feng, X.-L. Angew. Chem., Int. Ed. 2015, 54, 12058.  doi: 10.1002/anie.201506048

    21. [21]

      Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasak, S.; Kim, J.; Nakazato.; Takat, M.; Nishihara, H. J. Am. Chem. Soc. 2013, 135, 2462.  doi: 10.1021/ja312380b

    22. [22]

      Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C. J. Am. Chem. Soc. 2014, 137, 118.
       

    23. [23]

      Maeda, H.; Sakamoto, R.; Nishihara, H. Langmuir 2016, 32, 2527.  doi: 10.1021/acs.langmuir.6b00156

    24. [24]

      Sugimori, A.; Akiyama, T.; Kajitani, M.; Sugiyama, T. B. Chem. Soc. Jpn. 1999, 72, 879.  doi: 10.1246/bcsj.72.879

    25. [25]

      Dong R.-H., Pfeffermann M., Liang H.-W., Zheng Z.-K, Zhu X., Zhang J., Feng X.-L.. Angew. Chem., Int. -Ed.[J]. , 2015,5412058.

    26. [26]

      Huang, X.; Sheng, P.; Tu, Z.-Y.; Zhang, F.-J.; Wang, J. H.; Geng, H.; Zou, Y.; Di, C.-A.; Yi, Y.-P.; Sun, Y.-M.; Xu, W.; Zhu, D.-B. Nat. Comm. 2015, 6, 7408.  doi: 10.1038/ncomms8408

    27. [27]

      Huang, X.; Li, H.-S.; Tu, Z.-Y.; Liu, L.-Y.; Wu, X.-Y.; Chen, J.; Liang, Y.-Y.; Zou, Y.; Yi, Y.-P.; Zhu, D.-B. J. Am. Chem. Soc. 2018, 140, 15153.  doi: 10.1021/jacs.8b07921

    28. [28]

      Takada, K.; Sakamoto, R.; Yi, S.-T.; Katagiri, S.; Kambe, T.; Nishihara, H. J. Am. Chem. Soc. 2015, 137, 4681.  doi: 10.1021/ja510788b

    29. [29]

      Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H. J. Am. Chem. Soc. 2013, 135, 7438.  doi: 10.1021/ja402727d

    30. [30]

      Bauer, T.; Zheng, Z.-K.; Renn, A.; Enning, R.; Stemmer, A.; Sakamoto, J.; Schlüter, A. D. J. Am. Chem. Soc. 2011, 123, 8025.
       

    31. [31]

      Yang, R.-T.; Maldonado, A. J.; Yang, F.-H. Science 2003, 301, 79.  doi: 10.1126/science.1085088

    32. [32]

      Li, T.-F.; Zhang, W.; Chen, W.; Miras, H. N.; Song, Y.-F. ChemCatChem 2017, 10, 188.
       

    33. [33]

      Doherty, S.; Knight, J. G.; Carroll, M. A.; Ellison, J. R.; Hobson, S. J.; Stevens, S.; Hardacre, C.; Goodrichb, P. Green Chem. 2015, 17, 1559.  doi: 10.1039/C4GC01770F

    34. [34]

      Nisar, A.; Zhuang, J.; Wang, X. Adv. Mater. 2011, 23, 1130.  doi: 10.1002/adma.201003520

    35. [35]

      Nisar, A.; Lu, Y.; Zhuang, J.; Wang, X. Angew. Chem., Int. Ed. 2011, 123, 3245.  doi: 10.1002/ange.201006155

    36. [36]

      Schrauzer, G.; Prakash, H. Inorg. Chem. 1975, 14, 1200.  doi: 10.1021/ic50147a046

    37. [37]

      Hu, C.; Hu, C.-Y.; Ma, Q.-Y.; Hung, S.-F.; Chen, Z.-N.; Ou, D.-H.; Ren, B.; Chen, C.-M.; Fu, G.; Zheng, N.-F. Chem 2017, 3, 122.  doi: 10.1016/j.chempr.2017.05.011

    38. [38]

      Gaarenstroom, S.; Winograd, N. J. Chem. Phys. 1977, 67, 3500.
       

    39. [39]

      Rupp, H.; Weser, U. BBA-Protein Structure 1976, 446, 151.  doi: 10.1016/0005-2795(76)90107-0

    40. [40]

      Poulston, S.; Parlett, P. M.; Stone, P.; Bowker, M. Surf. Interface. Anal. 1996, 24, 811.  doi: 10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z

    41. [41]

      Zhang, Z.; Long, J.-L.; Yang, L.-F.; Chen, W.-K. Chem. Sci. 2011, 2, 1826.  doi: 10.1039/C1SC00257K

    42. [42]

      Sandhyarani, N.; Pradeep, T. J. Mater. Chem. 2001, 11, 1294.  doi: 10.1039/b009837j

    43. [43]

      Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H.-T. Science 2019, 366, 226.  doi: 10.1126/science.aay1844

    44. [44]

      Guo, X.-K.; Xu, M.-X.; She, M.-Y.; Zhu, Y.; Shi, T.-T.; Chen, Z.-X.; Peng, L.-M.; Guo, X.-F.; Lin, M.; Ding, W.-P. Angew. Chem., Int. Ed. 2020, 59, 2606.  doi: 10.1002/anie.201911749

    45. [45]

      Tan, B.; Wu, W.-H.; Liu, X.; Zhang, Y.-B.; Quan, X.; Zhao, H.-M. Nanoscale 2017, 9, 18699.  doi: 10.1039/C7NR05541B

    46. [46]

      Xiao, F.-S.; Sun, J.-M.; Meng, X.-J.; Yu, R.-B.; Yuan, H.-M.; Xu, J.-N.; Song, T.-Y.; Jiang, D.-Z.; Xu, R.-R. J. Catal. 2001, 199, 273.  doi: 10.1006/jcat.2001.3166

  • 加载中
    1. [1]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(15)
  • Abstract views(3523)
  • HTML views(372)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return