Citation: Huang Qingming. Study on the Upconversion Luminescence Mechanism of Tegtragonal LiYF4: RE with Sublattice Energy Cluster Construction and Crystal Field Manipulation[J]. Acta Chimica Sinica, ;2020, 78(9): 968-979. doi: 10.6023/A20050154 shu

Study on the Upconversion Luminescence Mechanism of Tegtragonal LiYF4: RE with Sublattice Energy Cluster Construction and Crystal Field Manipulation

  • Corresponding author: Huang Qingming, qmhuang@fzu.edu.cn
  • Received Date: 9 May 2020
    Available Online: 8 June 2020

    Fund Project: Project supported by the Natural Science Foundation of Fujian Province (No. 2017J01688)the Natural Science Foundation of Fujian Province 2017J01688

Figures(10)

  • Lanthanide ions doped tetragonal LiYF4 has became an investigative focus of upconversion luminescence (UCL) materials for its well properties of multi-photon UCL and as a comparable matrix material with hexagonal NaYF4. While the cause for its well performance on short bands emission is still unrevealed. After the exploration of crystal structure characteristic of tetragonal LiYF4, a hexagonal circle sublattice structure of Y3+ with 0.3710 nm interval between adjacent Y3+ ions and larger than 0.5 nm interval between meta-position and para-position Y3+ ions were revealed. The energy transfer of rare earth ions are easy take place around the hexagonal circles or among the cluster of five adjacent trivalent ions. Base on the sublattice structure characteristic of tetragonal LiYF4, we have an idea to study UCL mechanism systematically of tetragonal LiYF4:RE by the construction of sublattice energy cluster 1M-xYb (M=Er, Ho, Tm) and the manipulation of crystal field symmetry by introducing different amount Yb3+ ions and Sc3+ or Hf4+ ions, respectively. Hydrothermal method was employed to prepare LiY0.98-xYbxEr0.02F4, LiY0.98-xYbxHo0.02F4, LiY0.995-xYbxTm0.005F4, LiY0.68-xYb0.3Er0.02ScxF4 and LiY0.68-xYb0.3Er0.02HfxF4 series samples. A typical preparation process demonstrate as follows, at first, (1-x) mmol Y(NO3)3 (0.2 mol/L), x mmol (x=0.2, 0.5, 0.7 and 0.9) Yb(NO3)3 (0.20 mol/L) and Er(NO3)3 (0.02 mmol) solution was dropwise added into 20 mL deionized (DI) water with 1 mmol EDTA to form a solution under vigorous stirring for 30 min. Secondly, 3.0 mL LiOH (1.0 mol/L) and 4.0 mL NH4HF2(1.0 mol/L) aqueous solution were dropwise added to the solution under thorough stirring for 30 min until the solution completely became a white emulsion, the pH value of the emulsion is 3~4. Finally, the white emulsion was slowly transferred into a 50 mL Teflon-lined autoclave, sealed and heated at 190℃ for 18 h. The final products were collected by centrifugation, and then washed with DI water several times. The collected samples were dried at 60℃ over night. X-ray powder diffraction (XRD) and Rietveld refinement method were employed to reveal the variation of crystal structure, field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) were employed to the analysis of crystal morphology and crystal structure. UCL performance was analyzed by Edinburgh fluorescence spectrophotometer FSP920. After investigation, we found excited energy levels distribution of different RE ions is diverse, and the level matching with Yb3+ are different too, it result in different luminescence quenching of energy cross relaxation, so the different sublattice energy clusters 1Er-2Yb, 1Ho-2Yb and 1Tm-4Yb of different active rare earth ions can be constructed for the best UCL performance. The cystal field symmetry of tetragonal LiYF4:Yb/Er were manipulated successfully by 6 mol% Sc3+ or 4 mol% Hf4+ doping, and UCL intensity were enhanced about 50% with 6 mol% Sc3+, while the UCL intensity were weaken after Hf4+ doping. After Sc3+ or Hf4+ doping, there are only three Yb3+ ions in the five trivalence ions cluster that can't realize two-photon cooperation upconversion synchronous electron population of 4F5/2 excited state level of Er3+ ions and 2G7/2 or 4Fo5/2 excited state level of Sc3+ or Hf4+ respevticely, and then Sc3+ and Hf4+ ions become a quenching center in the asymmetric crystal field that is conversed with them doped hexagonal NaYF4:Yb/Er that Sc3+ and Hf4+ ions were taken as energy storage ions and dramatically enhanced UCL performance. In this work, the UCL mechanism of sublattice energy cluster construction and crystal field manipulation were revealed that may be an inspiration for high efficient UC luminescence materials design and preparation.
  • 加载中
    1. [1]

      Auzel, F. Chem. Rev. 2004, 104, 139.  doi: 10.1021/cr020357g

    2. [2]

      Yao, W.; Tian, Q.; Wu, W. Adv. Opt. Mater. 2019, 7, 1801171.  doi: 10.1002/adom.201801171

    3. [3]

      Ju, D.; Song, F.; Zhang, J.; Ming, C.; Song, F.; Khan, A.; Zhou, A.; Wang, X.; Liu, L. J. Alloys Compd. 2019, 770, 1181.  doi: 10.1016/j.jallcom.2018.08.227

    4. [4]

      Han, Y.; Li, H.; Wang, Y.; Pan, Y.; Huang, L.; Song, F.; Huang, W. Sci. Rep. 2017, 7, 1320.  doi: 10.1038/s41598-017-01611-9

    5. [5]

      Wiesholler, L. M.; Hirsch, T. Opt. Mater. 2018, 80, 253.  doi: 10.1016/j.optmat.2018.04.015

    6. [6]

      Xiong, L.; Fan, Y.; Zhang, F. Acta Chim. Sinica 2019, 77, 1239(in Chinese).
       

    7. [7]

      Xu, J.; Gulzar, A.; Yang, P.; Bi, H.; Yang, D.; Gai, S.; He, F.; Lin, J.; Xing, B.; Jin, D. Coord. Chem. Rev. 2019, 381, 104.  doi: 10.1016/j.ccr.2018.11.014

    8. [8]

      Li, H.; Tan, M.; Wang, X.; Li, F.; Zhang, Y.; Zhao, L.; Yang, C.; Chen, G. J. Am. Chem. Soc. 2020, 142, 2023.  doi: 10.1021/jacs.9b11641

    9. [9]

      Wei, Y.; Yang, X.; Ma, Y.; Wang, S.; Yuan, Q. Chin. J. Chem. 2016, 34, 558.  doi: 10.1002/cjoc.201500755

    10. [10]

      Qiu, H.; Tan, M.; Ohulchanskyy, T. Y.; Lovell, J. F.; Chen, G. Nanomaterials 2018, 8, 344.  doi: 10.3390/nano8050344

    11. [11]

      Lu, F.; Yang, L.; Ding, Y.; Zhu, J.-J. Adv. Funct. Mater. 2016, 26, 4778.  doi: 10.1002/adfm.201600464

    12. [12]

      Lee, G.; Park, Y. I. Nanomaterials 2018, 8, 511.  doi: 10.3390/nano8070511

    13. [13]

      Duan, C.; Liang, L.; Li, L.; Zhang, R.; Xu, Z. P. J. Mater. Chem. B 2018, 6, 192.  doi: 10.1039/C7TB02527K

    14. [14]

      Day, J.; Senthilarasu, S.; Mallick, T. K. Renewable Energy 2019, 132, 186.  doi: 10.1016/j.renene.2018.07.101

    15. [15]

      Qin, X.; Xu, J.; Wu, Y.; Liu, X. ACS Cent. Sci. 2019, 5, 29.  doi: 10.1021/acscentsci.8b00827

    16. [16]

      Chen, Y.; Zou, L.; Zhang, X.; Huang, Q.; Yu, H. ChemistrySelect 2019, 4, 4262.  doi: 10.1002/slct.201900125

    17. [17]

      Lv, Y.; Yue, L.; Li, Q.; Shao, B.; Zhao, S.; Wang, H.; Wu, S.; Wang, Z. Dalton Trans. 2018, 47, 1666.  doi: 10.1039/C7DT04279E

    18. [18]

      Ullah, S.; Hazra, C.; Ferreira-Neto, E. P.; Silva, T. C.; Rodrigues-Filho, U. P.; Ribeiro, S. J. L. Crystengcomm 2017, 19, 3465.  doi: 10.1039/C7CE00809K

    19. [19]

      Gao, W.; Tian, B.; Zhang, W.; Zhang, X.; Wu, Y.; Lu, G. Appl. Catal. B-Environ. 2019, 257, 117908.  doi: 10.1016/j.apcatb.2019.117908

    20. [20]

      Boppella, R.; Mota, F. M.; Lim, J. W.; Kochuveedu, S. T.; Ahn, S.; Lee, J.; Kawaguchi, D.; Tanaka, K.; Kim, D. H. ACS Appl. Energy Mater. 2019, 2, 3780.
       

    21. [21]

      Borges, M. E.; Sierra, M.; Mendez-Ramos, J.; Acosta-Mora, P.; Ruiz-Morales, J. C.; Esparza, P. Sol. Energy Mater. Sol. Cells 2016, 155, 194.  doi: 10.1016/j.solmat.2016.06.010

    22. [22]

      Kakavelakis, G.; Petridis, K.; Kymakis, E. J. Mater. Chem. A 2017, 5, 21604.  doi: 10.1039/C7TA05428A

    23. [23]

      Chen, X.; Xu, W.; Song, H.; Chen, C.; Xia, H.; Zhu, Y.; Zhou, D.; Cui, S.; Dai, Q.; Zhang, J. ACS Appl. Mater. Interfaces 2016, 8, 9071.  doi: 10.1021/acsami.5b12528

    24. [24]

      Schulze, T. F.; Schmidt, T. W. Energy Environ. Sci. 2015, 8, 103.  doi: 10.1039/C4EE02481H

    25. [25]

      Goldschmidt, J. C.; Fischer, S. Adv. Opt. Mater. 2015, 3, 510.  doi: 10.1002/adom.201500024

    26. [26]

      Lei, P.; An, R.; Zhai, X.; Yao, S.; Dong, L.; Xu, X.; Du, K.; Zhang, M.; Feng, J.; Zhang, H. J. Mater. Chem. C 2017, 5, 9659.  doi: 10.1039/C7TC03122J

    27. [27]

      Chen, D. Q.; Xu, M.; Huang, P. Sensor. Actuat. B-Chem. 2016, 231, 576.  doi: 10.1016/j.snb.2016.03.070

    28. [28]

      Reddy, K. L.; Balaji, R.; Kumar, A.; Krishnan, V. Small 2018, 14,1.
       

    29. [29]

      Gulzar, A.; Xu, J.; Yang, P.; He, F.; Xu, L. Nanoscale 2017, 9, 12248.  doi: 10.1039/C7NR01836C

    30. [30]

      Cheng, C.; Xu, Y.; Liu, S.; Liu, Y.; Wang, X.; Wang, J.; De, G. J. Mater. Chem. C 2019, 7, 8898.  doi: 10.1039/C9TC01323G

    31. [31]

      Judd, B. R. Phys. Rev. 1962, 127, 750.  doi: 10.1103/PhysRev.127.750

    32. [32]

      Huang, Q.; Yu, J.; Ma, E.; Lin, K. J. Phys. Chem. C 2010, 114, 4719.  doi: 10.1021/jp908645h

    33. [33]

      Guo, Y.; Zeng, H.; Jiang, Y.; Qi, G.; Chen, G.; Chen, J.; Sun, L. J. Lumin. 2019, 214, 116524.  doi: 10.1016/j.jlumin.2019.116524

    34. [34]

      Lin, H.; Xu, D.; Teng, D.; Yang, S.; Zhang, Y. Opt. Mater. 2015, 45, 229.  doi: 10.1016/j.optmat.2015.03.044

    35. [35]

      Huang, Q.; Yu, H.; Ma, E.; Zhang, X.; Cao, W.; Yang, C.; Yu, J. Inorg. Chem. 2015, 54, 2643.  doi: 10.1021/ic5027976

    36. [36]

      Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Luo, W.; Chen, X. Adv. Mater. 2010, 22, 3266.  doi: 10.1002/adma.201000128

    37. [37]

      Zhao, J.; Chen, X.; Chen, B.; Luo, X.; Sun, T.; Zhang, W.; Wang, C.; Lin, J.; Su, D.; Qiao, X.; Wang, F. Adv. Funct. Mater. 2019, 29, 1903295.  doi: 10.1002/adfm.201903295

    38. [38]

      Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Nat. Mater. 2011, 10, 968.  doi: 10.1038/nmat3149

    39. [39]

      Goncalves, J. M.; Guillot, P.; Caiut, J. M. A.; Caillier, B. J. Mater. Sci.-Mater. El. 2019, 30, 16724.  doi: 10.1007/s10854-019-01011-x

    40. [40]

      Xu, W.; Xu, S.; Zhu, Y.; Liu, T.; Bai, X.; Dong, B.; Xu, L.; Song, H. Nanoscale 2012, 4, 6971.  doi: 10.1039/c2nr32377j

    41. [41]

      Zhang, W. H.; Ding, F.; Chou, S. Y. Adv. Mater. 2012, 24, 236.
       

    42. [42]

      Zhao, J.; Jin, D.; Schartner, E. P.; Lu, Y.; Liu, Y.; Zvyagin, A. V.; Zhang, L.; Dawes, J. M.; Xi, P.; Piper, J. A.; Goldys, E. M.; Monro, T. M. Nat. Nanotechnol. 2013, 8, 729.  doi: 10.1038/nnano.2013.171

    43. [43]

      Liu, M.; Wu, Q.; Shi, H.; An, Z.; Huang, W. Acta Chim. Sinica 2018, 76, 246(in Chinese).
       

    44. [44]

      Wang, J.; Deng, R.; MacDonald, M. A.; Chen, B.; Yuan, J.; Wang, F.; Chi, D.; Hor, T. S. A.; Zhang, P.; Liu, G.; Han, Y.; Liu, X. Nat. Mater. 2014, 13, 157.  doi: 10.1038/nmat3804

    45. [45]

      Huang, Q. J. Alloys Compd. 2020, 821, 153544.  doi: 10.1016/j.jallcom.2019.153544

    46. [46]

      Purohit, B.; Guyot, Y.; Amans, D.; Joubert, M.-F.; Mahler, B.; Mishra, S.; Daniele, S.; Dujardin, C.; Ledoux, G. ACS Photonics 2019, 6, 3126.  doi: 10.1021/acsphotonics.9b01151

    47. [47]

      Shin, J.; Kyhm, J.-H.; Hong, A. R.; Song, J. D.; Lee, K.; Ko, H.; Jang, H. S. Chem. Mater. 2018, 30, 8457.  doi: 10.1021/acs.chemmater.8b02497

    48. [48]

      Huang, Q.; Yu, H.; Zhang, X.; Cao, W.; Yu, J. Acta Chim. Sinica 2016, 74, 191(in Chinese).
       

    49. [49]

      Fisher, B. R.; Eisler, H. J.; Stott, N. E.; Bawendi, M. G. J. Phys. Chem. B 2004, 108, 143.  doi: 10.1021/jp035756+

    50. [50]

      Ofelt, G. S. J. Chem. Phys. 1962, 37, 511.  doi: 10.1063/1.1701366

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(6)
  • Abstract views(3476)
  • HTML views(457)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return