Citation: Zhang Jinwei, Li Ping, Zhang Xinning, Ma Xiaojie, Wang Bo. Water Adsorption Properties and Applications of Stable Metal-organic Frameworks[J]. Acta Chimica Sinica, ;2020, 78(7): 597-612. doi: 10.6023/A20050153 shu

Water Adsorption Properties and Applications of Stable Metal-organic Frameworks

  • Corresponding author: Ma Xiaojie, xiaojiema@bit.edu.cn Wang Bo, bowang@bit.edu.cn
  • Received Date: 9 May 2020
    Available Online: 8 June 2020

    Fund Project: National Natural Science Foundation of China 21625102National Natural Science Foundation of China 21674012National Natural Science Foundation of China 21801017Beijing Municipal Science and Technology Project Z181100004418001National Natural Science Foundation of China 21490570Project supported by the National Natural Science Foundation of China (Nos. 21625102, 21801017, 21490570, 21674012), Beijing Municipal Science and Technology Project (No. Z181100004418001), and Beijing Institute of Technology Research Fund Program

Figures(24)

  • Metal-organic frameworks (MOFs), featuring the ultrahigh surface area, high porosity, tunable geometrical and chemical properties, show potential applications in gas adsorption/separation, heterogenous catalysis, etc. As the ubiquity of water vapor in the ambient environment and industrial gas streams, it is necessary to study on interaction mechanism between MOFs and water molecules and develop highly water-stable MOFs with desirable water adsorption/desorption behaviors. It not only has the scientific significance, but also great importance in promoting the practical applications of MOFs. Given the tailorable abilities of pore size, pore volume, cavity hydrophilicity and water stability, MOFs provide unprecedented advantages to explore the well-defined porous sorbents in molecular level, which facilitates the realization of reversible water vapor uptake and release at expected relative pressure and temperature together with high working capacity. For now, a wide range of hydrolytically stable MOFs including high-valence metal (e.g. Cr3+, Al3+, Zr4+, Ti4+) based frameworks have emerged as the advanced and promising porous sorbents for energy efficient applications, by utilizing water as eco-friendly adsorbate media and renewable heat. This review focuses on the following aspects:(1) the degradation mechanism of MOFs in liquid phase of water and the design concepts of hydrolytically stable MOFs by modulating their coordination bond based on the Pearson' hard/soft acid/base principle; (2) the physical or chemical water ad/desorption properties of MOFs; (3) the classification of numerous MOFs sorbents and conventional desiccants based on their hydrophilicity, which is approximately reflected by the relative humidity (RH) value of the inflection points (the RH where the steep uptake starts) in isotherms; (4) a variety of water adsorption-based applications of MOFs such as industrial gas dehydration, drinking water harvesting in the desert area, adsorption-based heat pump and indoor humidity regulation. Finally, the research priorities and development outlook are summarized and the future challenge with respect to water adsorption-based applications for the next-generation MOFs are outlined.
  • 加载中
    1. [1]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
       

    2. [2]

      Honicke, I. M.; Senkovska, I.; Bon, V.; Baburin, I. A.; Bonisch, N.; Raschke, S.; Evans, J. D.; Kaskel, S. Angew. Chem., Int. Ed. 2018, 57, 13780.

    3. [3]

      Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.  doi: 10.1021/cr300014x

    4. [4]

      Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Mater. Today 2019, 27, 43.
       

    5. [5]

      Duan, J.; Pan, Y.; Liu, G.; Jin, W. Curr. Opin. Chem. Eng. 2018, 20, 122.

    6. [6]

      Hou, J.; Zhang, H.; Simon, G. P.; Wang, H. Adv. Mater. 2019, e1902009.

    7. [7]

      Li, L. B.; Lin, R. B.; Krishna, R.; Li, H.; Xiang, S. C.; Wu, H.; Li, J. P.; Zhou, W.; Chen, B. L. Science 2018, 362, 443.  doi: 10.1021/jacs.7b04268

    8. [8]

      Lin, R. B.; Li, L.; Zhou, H. L.; Wu, H.; He, C.; Li, S.; Krishna, R.; Li, J.; Zhou, W.; Chen, B. Nat. Mater. 2018, 17, 1128.  doi: 10.1038/s41563-018-0206-2

    9. [9]

      Silva, P.; Vilela, S. M. F.; Tome, J. P. C.; Paz, F. A. A. Chem. Soc. Rev. 2015, 44, 6774.  doi: 10.1002/chin.201546236

    10. [10]

      Wang, X.; Zhang, Y.; Chang, Z.; Huang, H.; Liu, X.-T.; Xu, J.; Bu, X.-H. Chin. J. Chem. 2019, 37, 871.

    11. [11]

      Zhang, X.; Lin, R. B.; Wang, J.; Wang, B.; Liang, B.; Yildirim, T.; Zhang, J.; Zhou, W.; Chen, B. L. Adv. Mater. 2020, 32, 1907995.  doi: 10.1002/adma.201907995

    12. [12]

      Xue, D. X.; Wang, Q.; Bai, J. F. Coord. Chem. Rev. 2019, 378, 2.

    13. [13]

      Ding, M.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783.

    14. [14]

      Cadiau, A.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Pillai, R. S.; Shkurenko, A.; Martineau-Corcos, C.; Maurin, G.; Eddaoudi, M. Science 2017, 356, 731.  doi: 10.1126/science.aam8310

    15. [15]

      Xiao, J. D.; Jiang, H. L. Acc. Chem. Res. 2019, 52, 356.

    16. [16]

      Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Angew. Chem., Int. Ed. 2016, 55, 5414.  doi: 10.1002/anie.201505581

    17. [17]

      Li, R.; Zhang, W.; Zhou, K. Adv. Mater. 2018, 30, e1705512.

    18. [18]

      Li, D.; Kassymova, M.; Cai, X.; Zang, S.-Q.; Jiang, H.-L. Coord. Chem. Rev. 2020, 412, 213262.  doi: 10.1016/j.ccr.2020.213262

    19. [19]

      Guo, X.; Chen, X.; Su, D.; Liang, C. Acta Chim. Sinica 2018, 76, 22(in Chinese).
       

    20. [20]

      Qiao, W.; Song, T.; Zhao, B. Chin. J. Chem. 2019, 37, 474.

    21. [21]

      Ding, M.; Shi, W. H.; Guo, L.; Leong, Z. Y.; Baji, A.; Yang, H. Y. J. Mater. Chem. A 2017, 5, 6113.  doi: 10.1039/C7TA00339K

    22. [22]

      Li, X.; Liu, Y. X.; Wang, J.; Gascon, J.; Li, J. S.; Van der Bruggen, B. Chem. Soc. Rev. 2017, 46, 7124.  doi: 10.1039/c7cs00575j

    23. [23]

      Wang, H.; Rassu, P.; Wang, X.; Li, H.; Wang, X.; Wang, X.; Feng, X.; Yin, A.; Li, P.; Jin, X.; Chen, S. L.; Ma, X.; Wang, B. Angew. Chem., Int. Ed. 2018, 57, 16416.  doi: 10.1002/anie.201810268

    24. [24]

      Islamoglu, T.; Chen, Z.; Wasson, M. C.; Buru, C. T.; Kirlikovali, K. O.; Afrin, U.; Mian, M. R.; Farha, O. K. Chem. Rev. 2020. DOI:10.1021/acs.chemrev.9b00828.  doi: 10.1021/acs.chemrev.9b00828

    25. [25]

      Kalaj, M.; Denny, M. S., Jr.; Bentz, K. C.; Palomba, J. M.; Cohen, S. M. Angew. Chem., Int. Ed. 2019, 58, 2336.  doi: 10.1002/anie.201812655

    26. [26]

      Bian, L.; Li, W.; Wei, Z.; Liu, X.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese).
       

    27. [27]

      Wu, Z.; Shi, Y.; Li, C.; Niu, D.; Chu, Q.; Xiong, W.; Li, X. Acta Chim. Sinica 2019, 77, 758(in Chinese).
       

    28. [28]

      Sun, Y.; Qi, Y.; Shen, Y.; Jing, C.; Chen, X.; Wang, X. Acta Chim. Sinica 2020, 78, 147(in Chinese).
       

    29. [29]

      Wang, C.; Liu, X.; Keser Demir, N.; Chen, J. P.; Li, K. Chem. Soc. Rev. 2016, 45, 5107.  doi: 10.1039/c6cs00362a

    30. [30]

      Zhang, S. Y.; Jensen, S.; Tan, K.; Wojtas, L.; Roveto, M.; Cure, J.; Thonhauser, T.; Chabal, Y. J.; Zaworotko, M. J. J. Am. Chem. Soc. 2018, 140, 12545.  doi: 10.1021/jacs.8b07290

    31. [31]

      AbdulHalim, R. G.; Bhatt, P. M.; Belmabkhout, Y.; Shkurenko, A.; Adil, K.; Barbour, L. J.; Eddaoudi, M. J. Am. Chem. Soc. 2017, 139, 10715.  doi: 10.1021/jacs.7b04132

    32. [32]

      Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 4369.  doi: 10.1021/ja500330a

    33. [33]

      Wang, S.; Lee, J. S.; Wahiduzzaman, M.; Park, J.; Muschi, M.; Martineau-Corcos, C.; Tissot, A.; Cho, K. H.; Marrot, J.; Shepard, W.; Maurin, G.; Chang, J. S.; Serre, C. Nat. Energy 2018, 3, 985.  doi: 10.1038/s41560-018-0261-6

    34. [34]

      Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A. S.; Yaghi, O. M.; Wang, E. N. Science 2017, 356, 430.  doi: 10.1126/science.aam8743

    35. [35]

      Fathieh, F.; Kalmutzki, M. J.; Kapustin, E. A.; Waller, P. J.; Yang, J.; Yaghi, O. M. Sci. Adv. 2018, 4, eaat3198.  doi: 10.1126/sciadv.aat3198

    36. [36]

      Hanikel, N.; Prevot, M. S.; Fathieh, F.; Kapustin, E. A.; Lyu, H.; Wang, H.; Diercks, N. J.; Glover, T. G.; Yaghi, O. M. ACS Cent Sci. 2019, 5, 1699.  doi: 10.1002/adma.201807553

    37. [37]

      Xu, J.; Li, T.; Chao, J.; Wu, S.; Yan, T.; Li, W.; Cao, B.; Wang, R. Angew. Chem., Int. Ed. 2020, 59, 5202.

    38. [38]

      Hanikel, N.; Prevot, M. S.; Yaghi, O. M. Nat. Nanotechnol. 2020, 15, 348.

    39. [39]

      de Lange, M. F.; Verouden, K. J.; Vlugt, T. J.; Gascon, J.; Kapteijn, F. Chem. Rev. 2015, 115, 12205.  doi: 10.1021/acs.chemrev.5b00059

    40. [40]

      Lenzen, D.; Bendix, P.; Reinsch, H.; Fröhlich, D.; Kummer, H.; Möllers, M.; Hügenell, P. P. C.; Gläser, R.; Henninger, S.; Stock, N. Adv. Mater. 2018, 30, 1705869.  doi: 10.1002/adma.201705869

    41. [41]

      Cao, B. Y.; Tu, Y. D.; Wang, R. Z. iScience 2019, 15, 502.

    42. [42]

      Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Nat. Rev. Mater. 2016, 1, 1.  doi: 10.1038/natrevmats.2015.18

    43. [43]

      Bai, Y.; Dou, Y.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Chem. Soc. Rev. 2016, 45, 2327.  doi: 10.1039/c5cs00837a

    44. [44]

      Lin, R.-B.; Xiang, S.; Li, B.; Cui, Y.; Qian, G.; Zhou, W.; Chen, B. Coord. Chem. Rev. 2019, 384, 21.

    45. [45]

      Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754.  doi: 10.1002/chem.201702037

    46. [46]

      Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chin. J. Chem. 2020, 38, 509.

    47. [47]

      Yaghi, O. M.; Li, G. M.; Li, H. L. Nature 1995, 378, 703.  doi: 10.1038/378703a0

    48. [48]

      Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.  doi: 10.1038/46248

    49. [49]

      Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705.
       

    50. [50]

      Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148.
       

    51. [51]

      Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 14176.  doi: 10.1021/ja076877g

    52. [52]

      Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Chem. Soc. Rev. 2014, 43, 5594.  doi: 10.1039/c4cs00078a

    53. [53]

      Wu, Y.; Lv, Z.; Zhou, X.; Peng, J.; Tang, Y.; Li, Z. Chem. Eng. J. 2019, 355, 815.  doi: 10.1016/j.cej.2018.08.179

    54. [54]

      Devic, T.; Serre, C. Chem. Soc. Rev. 2014, 43, 6097.  doi: 10.1039/c4cs00081a

    55. [55]

      Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H. C. Adv. Mater. 2018, 30, e1704303.  doi: 10.1038/s41467-018-03102-5

    56. [56]

      Serre, C.; Millange, F.; Thouvenot, C.; Nogues, M.; Marsolier, G.; Louer, D.; Férey, G. J. Am. Chem. Soc. 2002, 124, 13519.  doi: 10.1021/ja0276974

    57. [57]

      Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040.  doi: 10.1126/science.1116275

    58. [58]

      Hong, D.-Y.; Hwang, Y. K.; Serre, C.; Férey, G.; Chang, J.-S. Adv. Funct. Mater. 2009, 19, 1537.  doi: 10.1002/adfm.200801130

    59. [59]

      Serre, C.; Mellot-Draznieks, C.; Surble, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Science 2007, 315, 1828.  doi: 10.1126/science.1137975

    60. [60]

      Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. Chem. Eur. J. 2004, 10, 1373.  doi: 10.1002/chem.200305413

    61. [61]

      Volkringer, C.; Loiseau, T.; Guillou, N.; Férey, G.; Elkaim, E.; Vimont, A. Dalton Trans. 2009, 2241.  doi: 10.1039/b817563b

    62. [62]

      Bauer, S.; Serre, C.; Devic, T.; Horcajada, P.; Marrot, J.; Férey, G.; Stock, N. Inorg. Chem. 2008, 47, 7568.  doi: 10.1021/ic800538r

    63. [63]

      Vimont, A.; Goupil, J. M.; Lavalley, J. C.; Daturi, M.; Surble, S.; Serre, C.; Millange, F.; Férey, G.; Audebrand, N. J. Am. Chem. Soc. 2006, 128, 3218.  doi: 10.1021/ja056906s

    64. [64]

      Volkringer, C.; Popov, D.; Loiseau, T.; Férey, G. r.; Burghammer, M.; Riekel, C.; Haouas, M.; Taulelle, F. Chem. Mater. 2009, 21, 5695.  doi: 10.1021/cm901983a

    65. [65]

      Reinsch, H.; Stock, N. CrystEngComm 2013, 15, 544.  doi: 10.1039/c2ce26436f

    66. [66]

      Horcajada, P.; Surble, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Greneche, J. M.; Margiolaki, I.; Férey, G. Chem. Commun. 2007, 2820.  doi: 10.1039/b704325b

    67. [67]

      Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Chem. Rev. 2012, 112, 1001.  doi: 10.1002/chin.201216256

    68. [68]

      Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186.  doi: 10.1073/pnas.0602439103

    69. [69]

      Jiang, X.; Li, S. W.; Bai, Y. P.; Shao, L. J. Mater. Chem. A 2019, 7, 10898.  doi: 10.1039/C8TA03872D

    70. [70]

      Xiong, Y.; Dong, J.; Huang, Z. Q.; Xin, P.; Chen, W.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z.; Ye, J.; Wei, X.; Cao, R.; Gu, L.; Sun, S.; Zhuang, L.; Chen, X.; Yang, H.; Chen, C.; Peng, Q.; Chang, C. R.; Wang, D.; Li, Y. Nat. Nanotechnol. 2020, 15, 390.

    71. [71]

      Huang, X. X.; Shen, T.; Zhang, T.; Qiu, H. L.; Gu, X. X.; Ali, Z.; Hou, Y. L. Adv. Energy Mater. 2020, 10, 21.

    72. [72]

      Li, P.; Li, J.; Feng, X.; Li, J.; Hao, Y.; Zhang, J.; Wang, H.; Yin, A.; Zhou, J.; Ma, X.; Wang, B. Nat. Commun. 2019, 10, 2177.

    73. [73]

      Gao, B.; Zhou, J.; Wang, H.; Zhang, G.; He, J.; Xu, Q.; Li, N.; Chen, D.; Li, H.; Lu, J. Chin. J. Chem. 2019, 37, 148.
       

    74. [74]

      Kalmutzki, M. J.; Diercks, C. S.; Yaghi, O. M. Adv. Mater. 2018, 30, e1704304.  doi: 10.1021/acscentsci.8b00677

    75. [75]

      Burtch, N. C.; Jasuja, H.; Walton, K. S. Chem. Rev. 2014, 114, 10575.  doi: 10.1021/la304204k

    76. [76]

      Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.

    77. [77]

      Ding, M.; Cai, X.; Jiang, H.-L. Chem. Sci. 2019, 10, 10209.

    78. [78]

      Colombo, V.; Galli, S.; Choi, H. J.; Han, G. D.; Maspero, A.; Palmisano, G.; Masciocchi, N.; Long, J. R. Chem. Sci. 2011, 2, 1311.  doi: 10.1039/c1sc00136a

    79. [79]

      Luo, Y. R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, U.S., 2007.

    80. [80]

      Yu, X. J.; Xian, Y. M.; Wang, C.; Mao, H. L.; Kind, M.; Abu-Husein, T.; Chen, Z.; Zhu, S. B.; Ren, B.; Terfort, A.; Zhuang, J. L. J. Am. Chem. Soc. 2019, 141, 18984.

    81. [81]

      Lu, P.; Wu, Y.; Kang, H.; Wei, H.; Liu, H.; Fang, M. J. Mater. Chem. A 2014, 2, 16250.

    82. [82]

      Khutia, A.; Rammelberg, H. U.; Schmidt, T.; Henninger, S.; Janiak, C. Chem. Mater. 2013, 25, 790.  doi: 10.1021/cm304055k

    83. [83]

      Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Férey, G. J. Am. Chem. Soc. 2009, 131, 10857.  doi: 10.1021/ja903726m

    84. [84]

      Yuan, S.; Liu, T. F.; Feng, D.; Tian, J.; Wang, K.; Qin, J.; Zhang, Q.; Chen, Y. P.; Bosch, M.; Zou, L.; Teat, S. J.; Dalgarno, S. J.; Zhou, H. C. Chem. Sci. 2015, 6, 3926.  doi: 10.1021/ja512762r

    85. [85]

      Bueken, B.; Vermoortele, F.; Vanpoucke, D. E. P.; Reinsch, H.; Tsou, C.-C.; Valvekens, P.; De Baerdemaeker, T.; Ameloot, R.; Kirschhock, C. E. A.; Van Speybroeck, V.; Mayer, J. M.; De Vos, D. Angew. Chem., Int. Ed. 2015, 54, 13912.  doi: 10.1002/anie.201505512

    86. [86]

      Nguyen, H. L.; Gandara, F.; Furukawa, H.; Doan, T. L. H.; Cordova, K. E.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 4330.  doi: 10.1021/jacs.6b01233

    87. [87]

      Nguyen, H. L.; Vu, T. T.; Le, D.; Doan, T. L. H.; Nguyen, V. Q.; Phan, N. T. S. ACS Catal. 2017, 7, 338.  doi: 10.1021/acscatal.6b02642

    88. [88]

      Gao, J.; Miao, J.; Li, P. Z.; Teng, W. Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q. Chem. Commun. 2014, 50, 3786.  doi: 10.1039/c3cc49440c

    89. [89]

      Keum, Y.; Park, S.; Chen, Y. P.; Park, J. Angew. Chem., Int. Ed. 2018, 57, 14852.

    90. [90]

      Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850.  doi: 10.1021/ja8057953

    91. [91]

      Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chem. Eur. J. 2011, 17, 6643.  doi: 10.1002/chem.201003211

    92. [92]

      Cao, J.; Yang, Z.-h.; Xiong, W.-p.; Zhou, Y.-y.; Peng, Y.-r.; Li, X.; Zhou, C.-y.; Xu, R.; Zhang, Y.-r. Chem. Eng. J. 2018, 353, 126.  doi: 10.1016/j.cej.2018.07.060

    93. [93]

      Du, X.-D.; Yi, X.-H.; Wang, P.; Zheng, W.; Deng, J.; Wang, C.-C. Chem. Eng. J. 2019, 356, 393.

    94. [94]

      Liu, Y.; Howarth, A. J.; Vermeulen, N. A.; Moon, S.-Y.; Hupp, J. T.; Farha, O. K. Coord. Chem. Rev. 2017, 346, 101.  doi: 10.1016/j.ccr.2016.11.008

    95. [95]

      Tanabe, K. K.; Cohen, S. M. Chem. Soc. Rev. 2011, 40, 498.  doi: 10.1039/C0CS00031K

    96. [96]

      Jasuja, H.; Burtch, N. C.; Huang, Y. G.; Cai, Y.; Walton, K. S. Langmuir 2013, 29, 633.  doi: 10.1021/la304204k

    97. [97]

      Lv, X. L.; Yuan, S.; Xie, L. H.; Darke, H. F.; Chen, Y.; He, T.; Dong, C.; Wang, B.; Zhang, Y. Z.; Li, J. R.; Zhou, H. C. J. Am. Chem. Soc. 2019, 141, 10283.

    98. [98]

      Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M. J. Am. Chem. Soc. 2012, 134, 18082.  doi: 10.1021/ja3079219

    99. [99]

      Lian, X.; Feng, D.; Chen, Y. P.; Liu, T. F.; Wang, X.; Zhou, H. C. Chem. Sci. 2015, 6, 7044.  doi: 10.1002/anie.201505625

    100. [100]

      Towsif Abtab, S. M.; Alezi, D.; Bhatt, P. M.; Shkurenko, A.; Belmabkhout, Y.; Aggarwal, H.; Weseliński, Ł. J.; Alsadun, N.; Samin, U.; Hedhili, M. N.; Eddaoudi, M. Chem 2018, 4, 94.  doi: 10.1016/j.chempr.2017.11.005

    101. [101]

      Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87, 1051.  doi: 10.1515/pac-2014-1117

    102. [102]

      Ng, E.-P.; Mintova, S. Microporous Mesoporous Mater. 2008, 114, 1.  doi: 10.1016/j.micromeso.2007.12.022

    103. [103]

      Canivet, J.; Bonnefoy, J.; Daniel, C.; Legrand, A.; Coasne, B.; Farrusseng, D. New J. Chem. 2014, 38, 3102.  doi: 10.1039/c4nj00076e

    104. [104]

      Hatch, C. D.; Wiese, J. S.; Crane, C. C.; Harris, K. J.; Kloss, H. G.; Baltrusaitis, J. Langmuir 2012, 28, 1790.  doi: 10.1021/la2042873

    105. [105]

      Cadiau, A.; Lee, J. S.; Damasceno Borges, D.; Fabry, P.; Devic, T.; Wharmby, M. T.; Martineau, C.; Foucher, D.; Taulelle, F.; Jun, C. H.; Hwang, Y. K.; Stock, N.; De Lange, M. F.; Kapteijn, F.; Gascon, J.; Maurin, G.; Chang, J. S.; Serre, C. Adv. Mater. 2015, 27, 4775.  doi: 10.1002/adma.201570216

    106. [106]

      Kummer, H.; Jeremias, F.; Warlo, A.; Füldner, G.; Fröhlich, D.; Janiak, C.; Gläser, R.; Henninger, S. K. Ind. Eng. Chem. Res. 2017, 56, 8393.  doi: 10.1021/acs.iecr.7b00106

    107. [107]

      Lenzen, D.; Zhao, J.; Ernst, S. J.; Wahiduzzaman, M.; Ken Inge, A.; Frohlich, D.; Xu, H.; Bart, H. J.; Janiak, C.; Henninger, S.; Maurin, G.; Zou, X.; Stock, N. Nat. Commun. 2019, 10, 3025.  doi: 10.1038/s41467-019-10960-0

    108. [108]

      Li, H.; Feng, X.; Ma, D.; Zhang, M.; Zhang, Y.; Liu, Y.; Zhang, J.; Wang, B. ACS Appl. Mater. Interfaces 2018, 10, 3160.  doi: 10.1021/acs.jafc.8b03305

    109. [109]

      Rieth, A. J.; Yang, S.; Wang, E. N.; Dincă, M. ACS Cent. Sci. 2017, 3, 668.  doi: 10.1021/acscentsci.7b00186

    110. [110]

      Chen, Z.; Li, P.; Zhang, X.; Li, P.; Wasson, M. C.; Islamoglu, T.; Stoddart, J. F.; Farha, O. K. J. Am. Chem. Soc. 2019, 141, 2900.  doi: 10.1021/jacs.8b13710

    111. [111]

      Leubner, S.; Zhao, H.; Van Velthoven, N.; Henrion, M.; Reinsch, H.; De Vos, D. E.; Kolb, U.; Stock, N. Angew. Chem., Int. Ed. 2019, 58, 10995.

    112. [112]

      Zhang, J. P.; Zhu, A. X.; Lin, R. B.; Qi, X. L.; Chen, X. M. Adv. Mater. 2011, 23, 1268.  doi: 10.1002/adma.201004028

    113. [113]

      Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Microporous Mesoporous Mater. 2009, 120, 325.  doi: 10.1016/j.micromeso.2008.11.020

    114. [114]

      Reinsch, H.; Pillai, R. S.; Siegel, R.; Senker, J.; Lieb, A.; Maurin, G.; Stock, N. Dalton Trans. 2016, 45, 4179.  doi: 10.1039/C5DT03510D

    115. [115]

      Ma, D.; Li, P.; Duan, X.; Li, J.; Shao, P.; Lang, Z.; Bao, L.; Zhang, Y.; Lin, Z.; Wang, B. Angew. Chem., Int. Ed. 2019, 59, 1.

    116. [116]

      Padial, N. M.; Quartapelle Procopio, E.; Montoro, C.; Lopez, E.; Enrique Oltra, J.; Colombo, V.; Maspero, A.; Masciocchi, N.; Galli, S.; Senkovska, I.; Kaskel, S.; Barea, E.; Navarro, J. A. R. Angew. Chem., Int. Ed. 2013, 52, 8290.  doi: 10.1002/anie.201303484

    117. [117]

      Karimi, A.; Abdi, M. A. Chem. Eng. Process.-Process Intensification 2009, 48, 560.  doi: 10.1016/j.cep.2008.09.002

    118. [118]

      Elimelech, M.; Phillip, W. A. Science 2011, 333, 712.  doi: 10.1126/science.1200488

    119. [119]

      Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A. S.; Yaghi, O. M.; Wang, E. N. Science 2017, 356, 430.
       

    120. [120]

      Sha, H.; Xu, P.; Yang, Z.; Chen, Y.; Tang, J. Renew. Sustain. Energy Rev. 2019, 108, 76.

    121. [121]

      Wade, C. R.; Corrales-Sanchez, T.; Narayan, T. C.; Dincă, M. Energy Environ. Sci. 2013, 6, 2172.  doi: 10.1039/c3ee40876k

    122. [122]

      Shi, C.; Zhang, H.; Xuan, Y. Build. Environ. 2019, 160, 106175.

    123. [123]

      De Rossi, A.; Carvalheiras, J.; Novais, R. M.; Ribeiro, M. J.; Labrincha, J. A.; Hotza, D.; Moreira, R. F. P. M. Constr. Build. Mater. 2018, 191, 39.  doi: 10.1016/j.conbuildmat.2018.09.201

    124. [124]

      Hall, M. R.; Tsang, S. C. E.; Casey, S. P.; Khan, M. A.; Yang, H. Acta Mater. 2012, 60, 89.  doi: 10.1016/j.actamat.2011.09.016

    125. [125]

      Watson, T. Nature 2014, 513, S14.

    126. [126]

      Hoek, G.; Krishnan, R. M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J. D. Environ. Health 2013, 12.

    127. [127]

      Buonocore, C.; De Vecchi, R.; Scalco, V.; Lamberts, R. Build. Environ. 2018, 146, 98.  doi: 10.1016/j.buildenv.2019.04.009

    128. [128]

      Arundel, A. V.; Sterling, E. M.; Biggin, J. H.; Sterling, T. D. Environ. Health Perspect. 1986, 65, 351.

    129. [129]

      Shehadi, M. J. Build. Eng. 2018, 19, 539.

    130. [130]

      Wright, A. M.; Rieth, A. J.; Yang, S.; Wang, E. N.; Dincă, M. Chem. Sci. 2018, 9, 3856.  doi: 10.1039/C8SC00112J

    131. [131]

      Zheng, J.; Vemuri, R. S.; Estevez, L.; Koech, P. K.; Varga, T.; Camaioni, D. M.; Blake, T. A.; McGrail, B. P.; Motkuri, R. K. J. Am. Chem. Soc. 2017, 139, 10601.  doi: 10.1021/jacs.7b04872

    132. [132]

      Tan, K.; Nijem, N.; Canepa, P.; Gong, Q.; Li, J.; Thonhauser, T.; Chabal, Y. J. Chem. Mater. 2012, 24, 3153.  doi: 10.1021/cm301427w

    133. [133]

      Liu, Z.; Li, W.; Liu, H.; Zhuang, X.; Li, S. Acta Chim. Sinica 2019, 77, 323(in Chinese).
       

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(71)
  • Abstract views(3486)
  • HTML views(635)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return