Citation: Yang Jing-Liang, Yang Wei-Min, Lin Jia-Sheng, Wang An, Xu Juan, Li Jian-Feng. Plasmon-induced Hot Electrons Influenced by Electric Field[J]. Acta Chimica Sinica, ;2020, 78(7): 670-674. doi: 10.6023/A20050150 shu

Plasmon-induced Hot Electrons Influenced by Electric Field

  • Corresponding author: Xu Juan, xjzhejiang.2008@163.com Li Jian-Feng, Li@xmu.edu.cn
  • Received Date: 8 May 2020
    Available Online: 16 June 2020

    Fund Project: the National Natural Science Foundation of China 21925404Project supported by the National Natural Science Foundation of China (Nos. 21925404, 21703180, 21775127)the National Natural Science Foundation of China 21703180the National Natural Science Foundation of China 21775127

Figures(4)

  • The plasmonic nanostructures have attracted particular attention due to their superior ability to capture and modulate light in ultraviolet-visible and near-infrared range, by changing the size, morphology, and the composition of nanostructures. Especially in plasmon-driven chemical reactions, plasmon-induced hot electrons (HEs) can be transferred from the surface of metal nanostructures to the lowest unoccupied molecular orbital (LUMO) of the adsorbate molecule or the conduction band of the semiconductor to achieve catalytic reaction. Therefore, how to improve the excitation efficiency of HEs has become a key problem to be solved urgently. In this paper, 120 nm Ag nanoparticles (NPs) were synthesized by seed growth method using 45 nm Au as seed. Subsequently, (3-aminopropyl)trimethoxysilane as coupling agent and sodium silicate as the silicon source were used to prepare the shell-isolated Ag NPs with 2~3 nm SiO2 shell (Ag SHINs). Finally, Ag SHINs were modified with poly(allylamine hydrochloride), then small Au (ca. 15 nm) as satellites were electrostatic self-assembled onto the surface of Ag SHINs to form a 3D Ag SHINs-Au superstructure. Using p-aminothiophenol (pATP) as probe molecule, in-situ surface-enhanced Raman spectroscopy (SERS) was employed to real-timely monitor the catalytic reaction processes from pATP to DMAB, using 532, 638, and 785 nm lasers for excitation, respectively. The results showed that the highest conversion efficiency was achieved when 638 nm laser was applied. In addition, the reaction rate under 785 nm excitation was faster than that under exposure to 532 nm laser. Then, we used three dimensional (3D) finite-difference time-domain (FDTD) to simulate the electric field distribution of 3D Ag SHINs-Au superstructure. The electric field simulation results are consistent with the experimental results. In consequence, the stronger the electric field intensity, the higher the HEs excitation efficiency. On the other hand, the intra-band transitions produce HEs more efficiently than inter-band transitions. Therefore, this study is helpful for understanding how the electric field intensity affect the excitation efficiency of the HEs.
  • 加载中
    1. [1]

      Moskovits, M. Rev. Mod. Phys. 1985, 57, 783.  doi: 10.1103/RevModPhys.57.783

    2. [2]

      Nie, S.; Emory, S. R. Science 1997, 275, 1102.  doi: 10.1126/science.275.5303.1102

    3. [3]

      Gersten, J. I.; Birke, R. L.; Lombardi, J. R. Phys. Rev. Lett. 1979, 43, 147.  doi: 10.1103/PhysRevLett.43.147

    4. [4]

      Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. Nat. Mater. 2019, 18, 697.  doi: 10.1038/s41563-019-0356-x

    5. [5]

      Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T.; Tian, Z. Q.; Li, J. F. Nat. Energy 2019, 4, 60.  doi: 10.1038/s41560-018-0292-z

    6. [6]

      Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26, 163.  doi: 10.1016/0009-2614(74)85388-1

    7. [7]

      Kozich, V.; Werncke, W. J. Phys. Chem. C 2010, 114, 10484.

    8. [8]

      Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Nature 2010, 464, 392.  doi: 10.1038/nature08907

    9. [9]

      Gao, Z. G.; Zhen, T. T.; Deng, J.; Li, X. R.; Qu, Y. Y.; Lu, Y.; Liu, T. J.; Luo, Y.; Zhao, W. J.; Lin, B. C. Acta Chim. Sinica 2017, 75, 355(in Chinese).  doi: 10.7503/cjcu20160572

    10. [10]

      Zhang, H.; Wei, J.; Zhang, X. G.; Zhang, Y. J.; Radjenovica, P. M.; Wu, D. Y.; Pan, F.; Tian, Z. Q.; Li J. F. Chem 2020, 6, 1.

    11. [11]

      Zuo, F. T.; Xu, W.; Zhao, A. W. Acta Chim. Sinica 2019, 77, 379(in Chinese).  doi: 10.7503/cjcu20180485

    12. [12]

      Avanesian, T.; Christopher, P. J. Phys. Chem. C 2014, 48, 28017.

    13. [13]

      Wei, Q.; Wu, S.; Sun, Y. Adv. Mater. 2018, 48, e1802082.

    14. [14]

      Besteiro, L. V.; Kong, X. T.; Wang, Z.; Hartland, G.; Govorov, A. O. ACS Photonics 2017, 11, 2759.

    15. [15]

      Kazuma, E.; Kim, Y. Angew. Chem. Int. Ed. 2019, 15, 4800.

    16. [16]

      Zhang, J.; Guan, M. X.; Lischner, J.; Meng, S.; Prezhdo, O. V. Nano Lett. 2019, 19, 3187.  doi: 10.1021/acs.nanolett.9b00647

    17. [17]

      Kim, M.; Lin, M.; Son, J.; Xu, H.; Nam, J. M. Adv. Opt. Mater. 2017, 15, 1700004.

    18. [18]

      Peckus, D.; Rong, H.; Stankevičius, L.; Juodėnas, M.; Tamulevičius, S.; Tamulevičius, T.; Henzie, J. J. Phys. Chem. C 2017, 43, 24159.

    19. [19]

      Yang, J. L.; Xu, J.; Ren, H.; Sun, L.; Xu, Q. C.; Zhang, H.; Li, J. F.; Tian, Z. Q. Nanoscale 2017, 9, 6254.  doi: 10.1039/C7NR00655A

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    8. [8]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    15. [15]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    16. [16]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    17. [17]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(23)
  • Abstract views(831)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return