Citation: Wang Youfu, Liu Hanghai, Zhu Xinyuan. Mechanically Interlocked Structures within Reticular Frameworks[J]. Acta Chimica Sinica, ;2020, 78(8): 746-757. doi: 10.6023/A20050147 shu

Mechanically Interlocked Structures within Reticular Frameworks

  • Corresponding author: Wang Youfu, wyfown@sjtu.edu.cn
  • Received Date: 7 May 2020
    Available Online: 15 June 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21805130) and the Science and Technology Commission of Shanghai Municipality (Nos. 18JC1410800, 17ZR1441300)the Science and Technology Commission of Shanghai Municipality 18JC1410800the Science and Technology Commission of Shanghai Municipality 17ZR1441300the National Natural Science Foundation of China 21805130

Figures(16)

  • The reticular frameworks have crystalline and extended porous structures, which can not only orderly organize a variety of building blocks to form mesoscopic materials in a programmable way, but also perform an excellent platform for basic scientific research because of the regulatable and precise structures. The representative systems of reticular frameworks are metal organic frameworks (MOFs) and covalent organic frameworks (COFs). Mechanically interlocked structures are molecular aggregations interacted through mechanical bond to realize complex functions. The combination of reticular frameworks and mechanically interlocked structures can promote the basic research of the microscopic interlocked behaviors in solid states; and also organize the interlocked structures in a regular way to achieve more complex functions. The mechanically interlocked structures can be introduced into reticular frameworks in two strategies, using mechanically interlocked structures as building blocks participating in the construction of reticular frameworks; and forming woven or interlocked frameworks with whole interlocked skeleton from unlocked precursors. This review summarizes the important progresses in the emerging research field combining the reticular frameworks and mechanically interlocked structures. In the first section, after the brief introduction of reticular frameworks and mechanically interlocked structures respectively, the significances and strategies of the combination of the above two fields is described. In the second section, we reveal the systematic and representative research of mechanically interlocked structure as a part of building blocks participating in the construction of reticular frameworks, including rotaxane, shuttle and catenate. The mechanical motions of rotaxanes and shuttle within MOFs are intensively studied. The representative methods and structures of introducing rotaxane or catenate into reticular frameworks are presented. In the third section, we exhibit the reticular frameworks constructed through mechanical bond as the main interaction within the whole skeleton from unlocked precursors, including resilient woven frameworks and mechanically interlocked frameworks. The typical woven or interlocked frameworks are mostly templated from special metal complexes and showing reversible transition between crystal and non-crystal maintaining the whole interlocked skeleton. Finally, we summarize the whole paper and discuss the future development in this crossing field, such as the applications of these combined systems should be expanded and the mechanically interlocked frameworks constructed through interlocking discrete molecular rings are expected due to the potential excellent elastic properties.
  • 加载中
    1. [1]

      (a) Rungtaweevoranit, B.; Diercks, C. S.; Kalmutzki, M. J.; Yaghi, Omar M. Faraday Discuss. 2017, 201, 9. (b) Yaghi, O. M. Mol. Front. J. 2019, 3, 66.

    2. [2]

    3. [3]

    4. [4]

      (a) Denis, M.; Goldup, S. M. Nat. Rev. Chem. 2017, 1, 0061. (b) Mena-Hernando, S.; Pérez, E. M. Chem. Soc. Rev. 2019, 48, 5016.

    5. [5]

      Stoddart, J. F. Angew. Chem. Int. Ed. 2017, 56, 11094.  doi: 10.1002/anie.201703216

    6. [6]

      Leigh, D. A.; Pritchard, R. G.; Stephens, A. J. Nat. Chem. 2014, 6, 978.  doi: 10.1038/nchem.2056

    7. [7]

      (a) Beves, J. E.; Blight, B. A.; Campbell, C. J.; Leigh, D. A.; McBurney, R. T. Angew. Chem. Int. Ed. 2011, 50, 9260. (b) Forgan, R. S.; Sauvage, J.-P.; Stoddart, J. F. Chem. Rev. 2011, 111, 5434.

    8. [8]

      (a) Niu, Z.; Gibson, H. W. Chem. Rev. 2009, 109, 6024. (b) Wu, Q.; Rauscher, P. M.; Lang, X.; Wojtecki, R. J.; de Pablo, J. J.; Hore, M. J. A.; Rowan, S. J. Science 2017, 358, 1434.

    9. [9]

      (a) Jiang, X.; Duan, H.-B.; Khan, S. I.; Garcia-Garibay, M. A. ACS Cent. Sci. 2016, 2, 608. (b) Vogelsberg, C. S.; Uribe-Romo, F. J.; Lipton, A. S.; Yang, S.; Houk, K. N.; Brown, S.; Garcia-Garibay, M. A. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 13613. (c) Gonzalez-Nelson, A.; Coudert, F.-X.; van der Veen, M. A. Nanomaterials 2019, 9, 330.

    10. [10]

      Danowski, W.; van Leeuwen, T.; Abdolahzadeh, S.; Roke, D.; Browne, W. R.; Wezenberg, S. J.; Feringa, B. L. Nat. Nanotechnol. 2019, 14, 488.  doi: 10.1038/s41565-019-0401-6

    11. [11]

      Martinez-Bulit, P.; Stirk, A. J.; Loeb, S. J. Trends in Chemistry 2019, 1, 588.  doi: 10.1016/j.trechm.2019.05.005

    12. [12]

      (a) Hoffart, D. J.; Loeb, S. J. Angew. Chem. Int. Ed. 2005, 44, 901. (b) Loeb, S. J. Chem. Commun. 2005, 1511. (c) Vukotic, V. N.; Loeb, S. J. Chem. Soc. Rev. 2012, 41, 5896. (d) Yang, J.; Ma, J.-F.; Batten, S. R. Chem. Commun. 2012, 48, 7899.

    13. [13]

      Vukotic, V. N.; Harris, K. J.; Zhu, K.; Schurko, R. W.; Loeb, S. J. Nat. Chem. 2012, 4, 456.  doi: 10.1038/nchem.1354

    14. [14]

      Vukotic, V. N.; O'Keefe, C. A.; Zhu, K.; Harris, K. J.; To, C.; Schurko, R. W.; Loeb, S. J. J. Am. Chem. Soc. 2015, 137, 9643.  doi: 10.1021/jacs.5b04674

    15. [15]

      Zhu, K.; Vukotic, V. N.; O'Keefe, C. A.; Schurko, R. W.; Loeb, S. J. J. Am. Chem. Soc. 2014, 136, 7403.  doi: 10.1021/ja502238a

    16. [16]

      Farahani, N.; Zhu, K.; O'Keefe, C. A.; Schurko, R. W.; Loeb, S. J. ChemPlusChem 2016, 81, 836.  doi: 10.1002/cplu.201600176

    17. [17]

      Zhu, K.; O'Keefe, C. A.; Vukotic, V. N.; Schurko, R. W.; Loeb, S. J. Nat. Chem. 2015, 7, 514.  doi: 10.1038/nchem.2258

    18. [18]

      Jonathan, C.; David, R.; Cory M., S. ChemRxiv 2019, doi.org/ 10.26434/chemrxiv.9942095.v1

    19. [19]

      Coskun, A.; Hmadeh, M.; Barin, G.; Gándara, F.; Li, Q.; Choi, E.; Strutt, N. L.; Cordes, D. B.; Slawin, A. M. Z.; Stoddart, J. F.; Sauvage, J. P.; Yaghi, O. M. Angew. Chem. Int. Ed. 2012, 51, 2160.  doi: 10.1002/anie.201107873

    20. [20]

      Deria, P.; Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J. T.; Farha, O. K. Chem. Soc. Rev. 2014, 43, 5896.  doi: 10.1039/C4CS00067F

    21. [21]

      McGonigal, P. R.; Deria, P.; Hod, I.; Moghadam, P. Z.; Avestro, A.-J.; Horwitz, N. E.; Gibbs-Hall, I. C.; Blackburn, A. K.; Chen, D.; Botros, Y. Y.; Wasielewski, M. R.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K.; Stoddart, J. F. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 11161.  doi: 10.1073/pnas.1514485112

    22. [22]

      Wang, T. C.; Vermeulen, N. A.; Kim, I. S.; Martinson, A. B. F.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. Nat. Protoc. 2016, 11, 149.  doi: 10.1038/nprot.2016.001

    23. [23]

      (a) Li, Q.; Zhang, W.; Miljanić, O. Š.; Sue, C.-H.; Zhao, Y.-L.; Liu, L.; Knobler, C. B.; Stoddart, J. F.; Yaghi, O. M. Science 2009, 325, 855. (b) Zhang, H.; Zou, R.; Zhao, Y. Coord. Chem. Rev. 2015, 292, 74.

    24. [24]

      Sue, A. C.-H.; Mannige, R. V.; Deng, H.; Cao, D.; Wang, C.; Gándara, F.; Stoddart, J. F.; Whitelam, S.; Yaghi, O. M. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 5591.  doi: 10.1073/pnas.1416417112

    25. [25]

      Li, Q.; Zhang, W.; Miljanić, O. Š.; Knobler, C. B.; Stoddart, J. F.; Yaghi, O. M. Chem. Commun. 2010, 46, 380.  doi: 10.1039/B919923C

    26. [26]

      Li, Q.; Sue, C.-H.; Basu, S.; Shveyd, A. K.; Zhang, W.; Barin, G.; Fang, L.; Sarjeant, A. A.; Stoddart, J. F.; Yaghi, O. M. Angew. Chem. Int. Ed. 2010, 49, 6751.  doi: 10.1002/anie.201003221

    27. [27]

      Cao, D.; Juríček, M.; Brown, Z. J.; Sue, A. C.-H.; Liu, Z.; Lei, J.; Blackburn, A. K.; Grunder, S.; Sarjeant, A. A.; Coskun, A.; Wang, C.; Farha, O. K.; Hupp, J. T.; Stoddart, J. F. Chem.-Eur. J. 2013, 19, 8457.  doi: 10.1002/chem.201300762

    28. [28]

      Lewis, J. E. M. Org. Biomol. Chem. 2019, 17, 2442.  doi: 10.1039/C9OB00107G

    29. [29]

      Chen, Q.; Sun, J.; Li, P.; Hod, I.; Moghadam, P. Z.; Kean, Z. S.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K.; Stoddart, J. F. J. Am. Chem. Soc. 2016, 138, 14242.  doi: 10.1021/jacs.6b09880

    30. [30]

      (a) Wang, Z.; Błaszczyk, A.; Fuhr, O.; Heissler, S.; Wöll, C.; Mayor, M. Nat. Commun. 2017, 8, 14442. (b) Champsaur, A. M.; Mézière, C.; Allain, M.; Paley, D. W.; Steigerwald, M. L.; Nuckolls, C.; Batail, P. J. Am. Chem. Soc. 2017, 139, 11718. (c) Lewandowska, U.; Zajaczkowski, W.; Corra, S.; Tanabe, J.; Borrmann, R.; Benetti, E. M.; Stappert, S.; Watanabe, K.; Ochs, N. A. K.; Schaeublin, R.; Li, C.; Yashima, E.; Pisula, W.; Mullen, K.; Wennemers, H. Nat. Chem. 2017, 9, 1068.

    31. [31]

      Liu, Y.; Yaghi, O. M. Bull. Jpn. Soc. Coord. Chem. 2018, 71, 12.  doi: 10.4019/bjscc.71.12

    32. [32]

      Liu, Y.; Ma, Y.; Zhao, Y.; Sun, X.; Gándara, F.; Furukawa, H.; Liu, Z.; Zhu, H.; Zhu, C.; Suenaga, K.; Oleynikov, P.; Alshammari, A. S.; Zhang, X.; Terasaki, O.; Yaghi, O. M. Science 2016, 351, 365.  doi: 10.1126/science.aad4011

    33. [33]

      Liu, Y.; Ma, Y.; Yang, J.; Diercks, C. S.; Tamura, N.; Jin, F.; Yaghi, O. M. J. Am. Chem. Soc. 2018, 140, 16015.  doi: 10.1021/jacs.8b08949

    34. [34]

      Xu, H.-S.; Luo, Y.; Li, X.; See, P. Z.; Chen, Z.; Ma, T.; Liang, L.; Leng, K.; Abdelwahab, I.; Wang, L.; Li, R. L.; Shi, X. Y.; Zhou, Y.; Lu, X. F.; Zhao, X. X.; Liu, C. B.; Sun, J. L.; Loh, K. P. Nat. Commun. 2020, 11, 1434.  doi: 10.1038/s41467-020-15281-1

    35. [35]

      Xu, H.-S.; Luo, Y.; See, P. Z.; Li, X.; Chen, Z.; Zhou, Y.; Zhao, X.; Leng, K.; Park, I.-H.; Li, R.; Liu, C.; Chen, F.; Xi, S.; Sun, J.; Loh, K. P. Angew. Chem. Int. Ed. 2020, 59, 11527.  doi: 10.1002/anie.202002724

    36. [36]

      Zhao, Y.; Guo, L.; Gándara, F.; Ma, Y.; Liu, Z.; Zhu, C.; Lyu, H.; Trickett, C. A.; Kapustin, E. A.; Terasaki, O.; Yaghi, O. M. J. Am. Chem. Soc. 2017, 139, 13166.  doi: 10.1021/jacs.7b07457

    37. [37]

      (a) Tian, J.; Chen, L.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Chem. Commun. 2016, 52, 6351. (b) Zhang, K.-D.; Tian, J.; Hanifi, D.; Zhang, Y.; Sue, A. C.-H.; Zhou, T.-Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z.-T. J. Am. Chem. Soc. 2013, 135, 17913. (c) Xu, S.-Q.; Zhang, X.; Nie, C.-B.; Pang, Z.-F.; Xu, X.-N.; Zhao, X. Chem. Commun. 2015, 51, 16417. (d) Li, Y.; Dong, Y.; Miao, X.; Ren, Y.; Zhang, B.; Wang, P.; Yu, Y.; Li, B.; Isaacs, L.; Cao, L. Angew. Chem. Int. Ed. 2018, 57, 729. (e) Lee, H.-J.; Kim, H.-J.; Lee, E.-C.; Kim, J.; Park, S. Y. Chem.-Asian J. 2018, 13, 390.

    38. [38]

      Tian, J.; Xu, Z.-Y.; Zhang, D.-W.; Wang, H.; Xie, S.-H.; Xu, D.-W.; Ren, Y.-H.; Wang, H.; Liu, Y.; Li, Z.-T. Nat. Commun. 2016, 7, 11580.  doi: 10.1038/ncomms11580

    39. [39]

      Liu, Y.; Diercks, C. S.; Ma, Y.; Lyu, H.; Zhu, C.; Alshmimri, S. A.; Alshihri, S.; Yaghi, O. M. J. Am. Chem. Soc. 2019, 141, 677.  doi: 10.1021/jacs.8b12177

    40. [40]

      Thorp-Greenwood, F. L.; Kulak, A. N.; Hardie, M. J. Nat. Chem. 2015, 7, 526.  doi: 10.1038/nchem.2259

    41. [41]

      Lewis, J. E. M.; Beer, P. D.; Loeb, S. J.; Goldup, S. M. Chem. Soc. Rev. 2017, 46, 2577.  doi: 10.1039/C7CS00199A

    42. [42]

      Liu, Y.; O'Keeffe, M.; Treacy, M. M. J.; Yaghi, O. M. Chem. Soc. Rev. 2018, 47, 4642.  doi: 10.1039/C7CS00695K

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    4. [4]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    20. [20]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

Metrics
  • PDF Downloads(48)
  • Abstract views(2472)
  • HTML views(747)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return