Citation: Zhu Qingqing, Song Xiaojun, Deng Zhaoxiang. Tunable Charge Transfer Plasmon at Gold/Copper Heterointerface[J]. Acta Chimica Sinica, ;2020, 78(7): 675-679. doi: 10.6023/A20050145 shu

Tunable Charge Transfer Plasmon at Gold/Copper Heterointerface

  • Corresponding author: Deng Zhaoxiang, zhxdeng@ustc.edu.cn
  • Received Date: 19 May 2020
    Available Online: 29 June 2020

    Fund Project: the National Natural Science Foundation of China 21425521Project supported by the National Key Research and Development Program of China (Nos. 2016YFA0201300, 2018YFA0702001) and the National Natural Science Foundation of China (Nos. 21425521, 21972130, 21521001)the National Natural Science Foundation of China 21521001the National Key Research and Development Program of China 2016YFA0201300the National Natural Science Foundation of China 21972130the National Key Research and Development Program of China 2018YFA0702001

Figures(4)

  • Metal nanostructures with localized surface plasmon resonance (LSPR) have attracted great attention in catalysis, sensing, nanooptics, and nanomedicine. Charge transfer plasmon (CTP) is a LSPR mode that strongly depends on a conductive junction between metallic nanounits. Benefitting from the charge transfer junction, CTP provides a facile way to generate widely tunable LSPR with highly localized/enhanced light magnetic field and photothermal effect. The limited availability of highly tunable CTP structures and their fabrication techniques hinders a further pursuit of their functions and applications. In response to this situation, the present work aims at developing a simple while highly efficient synthetic route to width-adjustable Au/Cu heterojunctions capable of evoking tunable CTP behaviors. The strategy relies on a non-specific surface adsorption of low-cost, naturally occurred fish sperm DNA on a gold nanoseed to control heterogeneous copper nucleation. Such a process offers a chance to tailor the contact area between the gold and copper nano-domains in the bimetallic structure. Highly tunable CTP resonance from visible to near-infrared region is then realizable on the basis of this method. Experimental and calculated extinction spectra consistently reveal three key variables for the CTP structure, including the width of conductive junction and the sizes of gold and copper particles. These parameters are associated with DNA coverage, copper precursor concentration, and the synthetic conditions for gold nanoparticles, which allow for a CTP tuning from visible to near infrared wavelengths. By fully exploiting these highly controllable parameters, the maximally achievable CTP wavelength readily enters a near infrared Ⅱ domain. The resulting CTP signals have a red-shift of up to 750 nm relative to the 530~570 nm LSPR peaks of individual gold and copper nanoparticles, corresponding to a very narrow Au/Cu conductive contact of 11~13 nm in width. The role of nonspecific DNA adsorption in the above process proves unique (currently irreplaceable) compared to other molecular adsorbates. The easily tunable Au/Cu heterointerface paves a way to integrated CTP and catalytic/sensing functions in future research.
  • 加载中
    1. [1]

      Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685.  doi: 10.1002/adma.200400271

    2. [2]

      Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 111, 3913.  doi: 10.1021/cr200061k

    3. [3]

      Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Nano Lett. 2004, 4, 899.  doi: 10.1021/nl049681c

    4. [4]

      Romero, I.; Aizpurua, J.; Bryant, G. W.; de Abajo, F. J. G. Opt. Express 2006, 14, 9988.  doi: 10.1364/OE.14.009988

    5. [5]

      Rechberger, W.; Hohenau, A.; Leitner, A.; Krenn, J. R.; Lamprecht, B.; Aussenegg, F. R. Opt. Commun. 2003, 220, 137.  doi: 10.1016/S0030-4018(03)01357-9

    6. [6]

      Savage, K. J.; Hawkeye, M. M.; Esteban, R.; Borisov, A. G.; Aizpurua, J.; Baumberg, J. J. Nature 2012, 491, 574.  doi: 10.1038/nature11653

    7. [7]

      Esteban, R.; Borisov, A. G.; Nordlander, P.; Aizpurua, J. Nat. Commun. 2012, 3, 825.  doi: 10.1038/ncomms1806

    8. [8]

      Wen, F. F.; Zhang, Y.; Gottheim, S.; King, N. S.; Zhang, Y.; Nordlander, P.; Halas, N. J. ACS Nano 2015, 9, 6428.  doi: 10.1021/acsnano.5b02087

    9. [9]

      Atay, T.; Song, J. H.; Nurmikko, A. V. Nano Lett. 2004, 4, 1627.  doi: 10.1021/nl049215n

    10. [10]

      Pérez-González, O.; Zabala, N.; Borisov, A. G.; Halas, N. J.; Nordlander, P.; Aizpurua, J. Nano Lett. 2010, 10, 3090.  doi: 10.1021/nl1017173

    11. [11]

      Grosjean, T.; Mivelle, M.; Baida, F. I.; Burr, G. W.; Fischer, U. C. Nano Lett. 2011, 11, 1009.  doi: 10.1021/nl103817f

    12. [12]

      Lim, B. K.; Kobayashi, H.; Yu, T.; Wang, J. G.; Kim, M. J.; Li, Z. Y.; Rycenga, M.; Xia, Y. N. J. Am. Chem. Soc. 2010, 132, 2506.  doi: 10.1021/ja909787h

    13. [13]

      Tao, Z. X.; Wu, Z. S.; Yuan, X. L.; Wu, Y. S.; Wang, H. L. ACS Catal. 2019, 9, 10894.  doi: 10.1021/acscatal.9b03158

    14. [14]

      Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T.; Hahn, C.; Jaramillo, T. F. Nat. Catal. 2018, 1, 764.  doi: 10.1038/s41929-018-0139-9

    15. [15]

      Zhu, X. Z.; Yip, H. K.; Zhuo, X. L.; Jiang, R. B.; Chen, J. L.; Zhu, X.-M.; Yang, Z.; Wang, J. F. J. Am. Chem. Soc. 2017, 139, 13837.  doi: 10.1021/jacs.7b07462

    16. [16]

      Kortlever, R.; Peters, I.; Balemans, C.; Kas, R.; Kwon, Y.; Mul, G.; Koper, M. T. M. Chem. Commun. 2016, 52, 10229.  doi: 10.1039/C6CC03717H

    17. [17]

      Cai, Z.; Kuang, Y.; Luo, L.; Wang, L. R.; Sun, X. M. Acta Chim. Sinica 2013, 71, 1265(in Chinese).
       

    18. [18]

      Liu, B. L.; Zhang, H. C.; Ding, Y. Chin. Chem. Lett. 2018, 29, 1725.  doi: 10.1016/j.cclet.2018.12.006

    19. [19]

      Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. J. Am. Chem. Soc. 2019, 141, 2490.  doi: 10.1021/jacs.8b12381

    20. [20]

      Huang, X.; Li, Y.; Zhou, H.; Zhong, X.; Duan, X.; Huang, Y. Chem. Eur. J. 2012, 18, 9505.  doi: 10.1002/chem.201200817

    21. [21]

      Wu, K. H.; Zhou, Y. W.; Ma, X. Y.; Ding, C.; Cai, W. B. Acta Chim. Sinica 2018, 76, 292(in Chinese).  doi: 10.7503/cjcu20170465

    22. [22]

      Xu, S. Y.; Liu, Z. H.; Zhang, H.; Yu, J. R. Acta Chim. Sinica 2019, 77, 427(in Chinese).
       

    23. [23]

      Jung, H.; Cha, H.; Lee, D.; Yoon, S. ACS Nano 2015, 9, 12292.  doi: 10.1021/acsnano.5b05568

    24. [24]

      Scholl, J. A.; Garcia-Etxarri, A.; Koh, A. L.; Dionne, J. A. Nano Lett. 2013, 13, 564.  doi: 10.1021/nl304078v

    25. [25]

      Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Chem. Rev. 2011, 111, 3736.  doi: 10.1021/cr1004452

    26. [26]

      Lan, X.; Chen, Z.; Liu, B. J.; Ren, B.; Henzie, J.; Wang, Q. B. Small 2013, 9, 2308.  doi: 10.1002/smll.201202503

    27. [27]

      Zhong, Z. Y.; Patskovskyy, S.; Bouvrette, P.; Luong, J. H. T.; Gedanken, A. J. Phys. Chem. B 2004, 108, 4046.  doi: 10.1021/jp037056a

    28. [28]

      Maye, M. M.; Nykypanchuk, D.; Cuisinier, M.; van der Lelie, D.; Gang, O. Nat. Mater. 2009, 8, 388.  doi: 10.1038/nmat2421

    29. [29]

      Yu, H.; Man, T. T.; Ji, W.; Shi, L. L.; Wu, C. W.; Pei, H.; Zhang, C. Chin. Chem. Lett. 2019, 30, 175.  doi: 10.1016/j.cclet.2018.04.020

    30. [30]

      Kim, J.-Y.; Kotov, N. A. Chem. Mater. 2014, 26, 134.  doi: 10.1021/cm402675k

    31. [31]

      Li, Y. L.; Deng, Z. X. Acc. Chem. Res. 2019, 52, 3442.  doi: 10.1021/acs.accounts.9b00463

    32. [32]

      Song, L.; Deng, Z. X. ChemNanoMat 2017, 3, 698.  doi: 10.1002/cnma.201700222

    33. [33]

      Fang, L. L.; Wang, Y. L.; Liu, M.; Gong, M.; Xu, A.; Deng, Z. X. Angew. Chem. Int. Ed. 2016, 55, 14296.  doi: 10.1002/anie.201608271

    34. [34]

      Fang, L. L.; Liu, D. L.; Wang, Y. L.; Li, Y. J.; Song, L.; Gong, M.; Li, Y.; Deng, Z. X. Nano Lett. 2018, 18, 7014.  doi: 10.1021/acs.nanolett.8b02965

    35. [35]

      Liu, M.; Fang, L. L.; Li, Y. L.; Gong, M.; Xu, A.; Deng, Z. X. Chem. Sci. 2016, 7, 5435.  doi: 10.1039/C6SC01407K

    36. [36]

      Wang, Y. L.; Fang, L. L.; Gong, M.; Deng, Z. X. Chem. Sci. 2019, 10, 5929.  doi: 10.1039/C9SC00403C

    37. [37]

      Sun, Y. Natl. Sci. Rev. 2015, 2, 329.  doi: 10.1093/nsr/nwv037

    38. [38]

      Gu, H. W.; Yang, Z. M.; Gao, J. H.; Chang, C. K.; Xu, B. J. Am. Chem. Soc. 2005, 127, 34.  doi: 10.1021/ja045220h

    39. [39]

      Zhu, C.; Zeng, J.; Tao, J.; Johnson, M. C.; Schmidt-Krey, I.; Blubaugh, L.; Zhu, Y. M.; Gu, Z. Z.; Xia, Y. N. J. Am. Chem. Soc. 2012, 134, 15822.  doi: 10.1021/ja305329g

    40. [40]

      Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Nano Lett. 2005, 5, 379.  doi: 10.1021/nl047955q

    41. [41]

      Feng, Y. H.; He, J. T.; Wang, H.; Tay, Y. Y.; Sun, H.; Zhu, L. F.; Chen, H. Y. J. Am. Chem. Soc. 2012, 134, 2004.  doi: 10.1021/ja211086y

    42. [42]

      Sun, Y. G.; Foley, J. J.; Peng, S.; Li, Z.; Gray, S. K. Nano Lett. 2013, 13, 3958.  doi: 10.1021/nl402361b

    43. [43]

      Song, T. J.; Tang, L. H.; Tan, L. H.; Wang, X. J.; Satyavolu, N. S. R.; Xing, H.; Wang, Z. D.; Li, J. H.; Liang, H. J.; Lu, Y. Angew. Chem. Int. Ed. 2015, 54, 8114.  doi: 10.1002/anie.201500838

    44. [44]

      Lee, J. H.; You, M. H.; Kim, G. H.; Nam, J. M. Nano Lett. 2014, 14, 6217.  doi: 10.1021/nl502541u

    45. [45]

      Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116, 3722.  doi: 10.1021/acs.chemrev.5b00482

    46. [46]

      Chen, S. T.; Jenkins, S. V.; Tao, J.; Zhu, Y. M.; Chen, J. Y. J. Phys. Chem. C 2013, 117, 8924.  doi: 10.1021/jp4013653

    47. [47]

      Osowiecki, W. T.; Ye, X. C.; Satish, P.; Bustillo, K. C.; Clark, E. L.; Alivisatos, A. P. J. Am. Chem. Soc. 2018, 140, 8569.  doi: 10.1021/jacs.8b04558

    48. [48]

      Wu, S. H.; Chen, D. H. J. Colloid Interface Sci. 2004, 273, 165.  doi: 10.1016/j.jcis.2004.01.071

    49. [49]

      Lin, M. H.; Kim, G. H.; Kim, J. H.; Oh, J. W.; Nam, J. M. J. Am. Chem. Soc. 2017, 139, 10180.  doi: 10.1021/jacs.7b04202

    50. [50]

      Kim, J. H.; Park, J. E.; Lin, M.; Kim, S.; Kim, G. H.; Park, S.; Ko, G.; Nam, J. M. Adv. Mater. 2017, 29, 1702945.  doi: 10.1002/adma.201702945

    51. [51]

      Kislenko, V. N.; Oliynyk, L. P. J. Polym. Sci., Part A:Polym. Chem. 2002, 40, 914.  doi: 10.1002/pola.10157

    52. [52]

      Hohenester, U.; Trügler, A. Comput. Phys. Commun. 2012, 183, 370.  doi: 10.1016/j.cpc.2011.09.009

    53. [53]

      Wolf, L. K.; Gao, Y.; Georgiadis, R. M. Langmuir 2004, 20, 3357.  doi: 10.1021/la036125+

    54. [54]

      Fang, Y. J. Chem. Phys. 1998, 108, 4315.

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    4. [4]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    5. [5]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    6. [6]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    7. [7]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    11. [11]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    12. [12]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    13. [13]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    17. [17]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    20. [20]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

Metrics
  • PDF Downloads(11)
  • Abstract views(952)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return