Citation: Wu Qianye, Zhang Chenxi, Sun Kang, Jiang Hai-Long. Microwave-Assisted Synthesis and Photocatalytic Performance of a Soluble Porphyrinic MOF[J]. Acta Chimica Sinica, ;2020, 78(7): 688-694. doi: 10.6023/A20050141 shu

Microwave-Assisted Synthesis and Photocatalytic Performance of a Soluble Porphyrinic MOF

  • Corresponding author: Jiang Hai-Long, jianglab@ustc.edu.cn
  • Received Date: 3 May 2020
    Available Online: 1 June 2020

    Fund Project: the National Natural Science Foundation of China 21725101the National Natural Science Foundation of China 21521001Project supported by the National Natural Science Foundation of China (Nos. 21725101, 21673213, 21521001)the National Natural Science Foundation of China 21673213

Figures(6)

  • Metal-organic frameworks (MOFs), a class of promising heterogeneous catalysts, though readily recyclable, usually suffer from poor dispersity and ease of sedimentation in liquid-phase reaction systems, which may lead to limited exposure of active sites and unsatisfied activity. Conventional hydrothermal synthesis often results in large MOF particles in bulk form and poor dispersity. The homogenization of MOF catalysts is an exciting but challenging task to integrate the advantages of both homogeneous and heterogeneous catalysts. Herein, by means of microwave-assisted synthetic approach, a soluble porphyrinic MOF, denoted as S-Al-PMOF, has been successfully fabricated. In contrast to the Bulk-Al-PMOF synthesized by the conventional hydrothermal route, which requires 180℃ and 16 h, the S-Al-PMOF obtained by the microwave-assisted method is very efficient and takes 30 min only at 140℃. While the as-synthesized S-Al-PMOF can be completely soluble in acetonitrile by ultrasonic dispersion to give a clear and transparent colloidal solution, the Bulk-Al-PMOF can form a turbid suspension liquid by continuous stirring, which easily aggregate with sedimentation in a short time after standing. Furthermore, the S-Al-PMOF can be easily separated from the solution by suction filtration and then re-dissolved in acetonitrile. This separation and re-dissolution process can be repeated several times to prove its good recovery and recycling. Given the outstanding light harvesting ability of Al-PMOF, photocatalytic H2 production by water splitting has been adopted to examine the activity of both S-Al-PMOF and Bulk-Al-PMOF. As a result, the activity of S-Al-PMOF is around 14 times higher than that of Bulk-Al-PMOF, owing to excellent solubility of the former. Moreover, S-Al-PMOF also exhibits good recyclability in the consecutive three cycles of reaction. We believe that the successful synthesis of soluble Al-PMOF opens a new avenue to the homogenization of heterogeneous catalysts.
  • 加载中
    1. [1]

      Cui, X.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Nat. Catal. 2018, 1, 385.  doi: 10.1038/s41929-018-0090-9

    2. [2]

      Copéret, C.; Chabanas, M.; Saint-Arroman, R. P.; Basset, J. M. Angew. Chem., Int. Ed. 2003, 42, 156.  doi: 10.1002/anie.200390072

    3. [3]

      Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Chem. Rev. 2020, 120, 623.  doi: 10.1021/acs.chemrev.9b00311

    4. [4]

      Ye, R.; Zhukhovitskiy, A. V.; Deraedt, C. V.; Toste, F. D.; Somorjai, G. A. Acc. Chem. Res. 2017, 50, 1894.  doi: 10.1021/acs.accounts.7b00232

    5. [5]

      Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem., Int. Ed. 2005, 44, 7852.  doi: 10.1002/anie.200500766

    6. [6]

      Li, H.; Chen, G.; Duchesne, P. N.; Zhang, P.; Dai, Y.; Yang, H.; Wu, B.; Liu, S.; Xu, C.; Zheng, N. Chin. J. Catal. 2015, 36, 1560.
       

    7. [7]

      Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Mater. Today 2019, 27, 43.  doi: 10.1016/j.mattod.2018.10.038

    8. [8]

      Zhang, J.-P.; Zhang, Y.-B.; Lin, J.-B.; Chen, X.-M. Chem. Rev. 2012, 112, 1001.  doi: 10.1021/cr200139g

    9. [9]

      Zhou, H.-C.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415.  doi: 10.1039/C4CS90059F

    10. [10]

      Qian, B.; Li, N.; Chang, Z.; Bu, X.-H. Sci. Sin. Chim. 2019, 49, 1361.

    11. [11]

      Li, B.; Wen, H.-M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B. Adv. Mater. 2016, 28, 8819.  doi: 10.1002/adma.201601133

    12. [12]

      Zhou, Z.; Xue, C.; Yang, Q.; Zhong, C. Acta Chim. Sinica 2009, 67, 477.
       

    13. [13]

      Yao, M.-S.; Tang, W.-X.; Wang, G.-E.; Nath, B.; Xu, G. Adv. Mater. 2016, 28, 5229.  doi: 10.1002/adma.201506457

    14. [14]

      He, Y.; Tan, Y.; Zhang, J. Acta Chim. Sinica 2014, 72, 1228.
       

    15. [15]

      Huang, R.-W.; Wei, Y.-S.; Dong, X.-Y.; Wu, X.-H.; Du, C.-X.; Zang, S.-Q.; Mak, T. C. W. Nat. Chem. 2017, 9, 689.  doi: 10.1038/nchem.2718

    16. [16]

      Zeng, L.; Guo, X.; He, C.; Duan, C. ACS Catal. 2016, 6, 7935.  doi: 10.1021/acscatal.6b02228

    17. [17]

      Wang, Y.-R.; Huang, Q.; He, C.-T.; Chen, Y.; Liu, J.; Shen, F.-C.; Lan, Y.-Q. Nat. Commun. 2018, 9, 4466.  doi: 10.1038/s41467-018-06938-z

    18. [18]

      Chen, X.; Peng, Y.; Han, X.; Liu, Y.; Lin, X.; Cui, Y. Nat. Commun. 2017, 8, 2171.  doi: 10.1038/s41467-017-02335-0

    19. [19]

      Xiao, J.-D.; Li, D.; Jiang, H.-L. Sci. Sin. Chim. 2018, 48, 1058.
       

    20. [20]

      Zeng, J.; Wang, X.; Zhang, X.; Zhuo, R. Acta Chim. Sinica 2019, 77, 1156.
       

    21. [21]

      Yang, W.; Liang, H.; Qiao, Z. Acta Chim. Sinica 2018, 76, 785.
       

    22. [22]

      Li, D.; Xu, H.; Jiao, L.; Jiang, H.-L. EnergyChem 2019, 1, 100005.  doi: 10.1016/j.enchem.2019.100005

    23. [23]

      Huang, G.; Chen, Y.; Jiang, H.-L. Acta Chim. Sinica 2016, 74, 113  doi: 10.3969/j.issn.0253-2409.2016.01.016

    24. [24]

      Cai, G.; Ding, M.; Wu, Q.; Jiang, H.-L. Natl. Sci. Rev. 2020, 7, 37.  doi: 10.1093/nsr/nwz147

    25. [25]

      Qiao, W.; Song, T.; Zhao, B. Chin. J. Chem. 2019, 37, 474.  doi: 10.1002/cjoc.201800587

    26. [26]

      Gao, B.; Zhou, J.; Wang, H.; Zhang, G.; He, J.; Xu, Q.; Li, N.; Chen, D.; Li, H.; Lu, J. Chin. J. Chem. 2019, 37, 148.  doi: 10.1002/cjoc.201800440

    27. [27]

      Zhang, P.; Li, H.; Veith, G. M.; Dai, S. Adv. Mater. 2015, 27, 234.  doi: 10.1002/adma.201403299

    28. [28]

      Huang, Y.; Wang, Q.; Liang, J.; Wang, X.; Cao, R. J. Am. Chem. Soc. 2016, 138, 10104.  doi: 10.1021/jacs.6b06185

    29. [29]

      Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J. Dalton Trans. 2011, 40, 321.  doi: 10.1039/C0DT00708K

    30. [30]

      Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. Angew. Chem., Int. Ed. 2012, 51, 7440.  doi: 10.1002/anie.201202471

    31. [31]

      Sun, J.-K.; Zhan, W.-W.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2015, 137, 7063.  doi: 10.1021/jacs.5b04029

    32. [32]

      Zhang, S.; Liu, Y.; Li, D.; Wang, Q.; Ran, F. Appl. Surf. Sci. 2020, 505, 144553.  doi: 10.1016/j.apsusc.2019.144553

    33. [33]

      Gao, Z.-Z.; Wang, Z.-K.; Wei, L.; Yin, G.; Tian, J.; Liu, C.-Z.; Wang, H.; Zhang, D.-W.; Zhang, Y.-B.; Li, X.; Liu, Y.; Li, Z.-T. ACS Appl. Mater. Interfaces 2020, 12, 1404.  doi: 10.1021/acsami.9b19870

    34. [34]

      Luo, Y.; Peng, Y.; Liu, W.; Chen, F.; Wang, B. Chem. Eur. J. 2017, 23, 8879.  doi: 10.1002/chem.201605794

    35. [35]

      Xiao, J.-D.; Shang, Q.; Xiong, Y.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. Angew. Chem., Int. Ed. 2016, 55, 9389.  doi: 10.1002/anie.201603990

    36. [36]

      Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. Angew. Chem., Int. Ed. 2012, 51, 3364.  doi: 10.1002/anie.201108357

    37. [37]

      Xu, H.-Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. J. Am. Chem. Soc. 2015, 137, 13440.  doi: 10.1021/jacs.5b08773

    38. [38]

      Liu, H.; Xu, C.; Li, D.; Jiang, H.-L. Angew. Chem., Int. Ed. 2018, 57, 5379.  doi: 10.1002/anie.201800320

    39. [39]

      Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Angew. Chem., Int. Ed. 2012, 51, 10307.  doi: 10.1002/anie.201204475

  • 加载中
    1. [1]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    5. [5]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    6. [6]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    7. [7]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    10. [10]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    17. [17]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    18. [18]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

Metrics
  • PDF Downloads(28)
  • Abstract views(2378)
  • HTML views(579)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return