Citation: Wu Qianye, Zhang Chenxi, Sun Kang, Jiang Hai-Long. Microwave-Assisted Synthesis and Photocatalytic Performance of a Soluble Porphyrinic MOF[J]. Acta Chimica Sinica, ;2020, 78(7): 688-694. doi: 10.6023/A20050141 shu

Microwave-Assisted Synthesis and Photocatalytic Performance of a Soluble Porphyrinic MOF

  • Corresponding author: Jiang Hai-Long, jianglab@ustc.edu.cn
  • Received Date: 3 May 2020
    Available Online: 1 June 2020

    Fund Project: the National Natural Science Foundation of China 21725101the National Natural Science Foundation of China 21521001Project supported by the National Natural Science Foundation of China (Nos. 21725101, 21673213, 21521001)the National Natural Science Foundation of China 21673213

Figures(6)

  • Metal-organic frameworks (MOFs), a class of promising heterogeneous catalysts, though readily recyclable, usually suffer from poor dispersity and ease of sedimentation in liquid-phase reaction systems, which may lead to limited exposure of active sites and unsatisfied activity. Conventional hydrothermal synthesis often results in large MOF particles in bulk form and poor dispersity. The homogenization of MOF catalysts is an exciting but challenging task to integrate the advantages of both homogeneous and heterogeneous catalysts. Herein, by means of microwave-assisted synthetic approach, a soluble porphyrinic MOF, denoted as S-Al-PMOF, has been successfully fabricated. In contrast to the Bulk-Al-PMOF synthesized by the conventional hydrothermal route, which requires 180℃ and 16 h, the S-Al-PMOF obtained by the microwave-assisted method is very efficient and takes 30 min only at 140℃. While the as-synthesized S-Al-PMOF can be completely soluble in acetonitrile by ultrasonic dispersion to give a clear and transparent colloidal solution, the Bulk-Al-PMOF can form a turbid suspension liquid by continuous stirring, which easily aggregate with sedimentation in a short time after standing. Furthermore, the S-Al-PMOF can be easily separated from the solution by suction filtration and then re-dissolved in acetonitrile. This separation and re-dissolution process can be repeated several times to prove its good recovery and recycling. Given the outstanding light harvesting ability of Al-PMOF, photocatalytic H2 production by water splitting has been adopted to examine the activity of both S-Al-PMOF and Bulk-Al-PMOF. As a result, the activity of S-Al-PMOF is around 14 times higher than that of Bulk-Al-PMOF, owing to excellent solubility of the former. Moreover, S-Al-PMOF also exhibits good recyclability in the consecutive three cycles of reaction. We believe that the successful synthesis of soluble Al-PMOF opens a new avenue to the homogenization of heterogeneous catalysts.
  • 加载中
    1. [1]

      Cui, X.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Nat. Catal. 2018, 1, 385.  doi: 10.1038/s41929-018-0090-9

    2. [2]

      Copéret, C.; Chabanas, M.; Saint-Arroman, R. P.; Basset, J. M. Angew. Chem., Int. Ed. 2003, 42, 156.  doi: 10.1002/anie.200390072

    3. [3]

      Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Chem. Rev. 2020, 120, 623.  doi: 10.1021/acs.chemrev.9b00311

    4. [4]

      Ye, R.; Zhukhovitskiy, A. V.; Deraedt, C. V.; Toste, F. D.; Somorjai, G. A. Acc. Chem. Res. 2017, 50, 1894.  doi: 10.1021/acs.accounts.7b00232

    5. [5]

      Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem., Int. Ed. 2005, 44, 7852.  doi: 10.1002/anie.200500766

    6. [6]

      Li, H.; Chen, G.; Duchesne, P. N.; Zhang, P.; Dai, Y.; Yang, H.; Wu, B.; Liu, S.; Xu, C.; Zheng, N. Chin. J. Catal. 2015, 36, 1560.
       

    7. [7]

      Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Mater. Today 2019, 27, 43.  doi: 10.1016/j.mattod.2018.10.038

    8. [8]

      Zhang, J.-P.; Zhang, Y.-B.; Lin, J.-B.; Chen, X.-M. Chem. Rev. 2012, 112, 1001.  doi: 10.1021/cr200139g

    9. [9]

      Zhou, H.-C.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415.  doi: 10.1039/C4CS90059F

    10. [10]

      Qian, B.; Li, N.; Chang, Z.; Bu, X.-H. Sci. Sin. Chim. 2019, 49, 1361.

    11. [11]

      Li, B.; Wen, H.-M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B. Adv. Mater. 2016, 28, 8819.  doi: 10.1002/adma.201601133

    12. [12]

      Zhou, Z.; Xue, C.; Yang, Q.; Zhong, C. Acta Chim. Sinica 2009, 67, 477.
       

    13. [13]

      Yao, M.-S.; Tang, W.-X.; Wang, G.-E.; Nath, B.; Xu, G. Adv. Mater. 2016, 28, 5229.  doi: 10.1002/adma.201506457

    14. [14]

      He, Y.; Tan, Y.; Zhang, J. Acta Chim. Sinica 2014, 72, 1228.
       

    15. [15]

      Huang, R.-W.; Wei, Y.-S.; Dong, X.-Y.; Wu, X.-H.; Du, C.-X.; Zang, S.-Q.; Mak, T. C. W. Nat. Chem. 2017, 9, 689.  doi: 10.1038/nchem.2718

    16. [16]

      Zeng, L.; Guo, X.; He, C.; Duan, C. ACS Catal. 2016, 6, 7935.  doi: 10.1021/acscatal.6b02228

    17. [17]

      Wang, Y.-R.; Huang, Q.; He, C.-T.; Chen, Y.; Liu, J.; Shen, F.-C.; Lan, Y.-Q. Nat. Commun. 2018, 9, 4466.  doi: 10.1038/s41467-018-06938-z

    18. [18]

      Chen, X.; Peng, Y.; Han, X.; Liu, Y.; Lin, X.; Cui, Y. Nat. Commun. 2017, 8, 2171.  doi: 10.1038/s41467-017-02335-0

    19. [19]

      Xiao, J.-D.; Li, D.; Jiang, H.-L. Sci. Sin. Chim. 2018, 48, 1058.
       

    20. [20]

      Zeng, J.; Wang, X.; Zhang, X.; Zhuo, R. Acta Chim. Sinica 2019, 77, 1156.
       

    21. [21]

      Yang, W.; Liang, H.; Qiao, Z. Acta Chim. Sinica 2018, 76, 785.
       

    22. [22]

      Li, D.; Xu, H.; Jiao, L.; Jiang, H.-L. EnergyChem 2019, 1, 100005.  doi: 10.1016/j.enchem.2019.100005

    23. [23]

      Huang, G.; Chen, Y.; Jiang, H.-L. Acta Chim. Sinica 2016, 74, 113  doi: 10.3969/j.issn.0253-2409.2016.01.016

    24. [24]

      Cai, G.; Ding, M.; Wu, Q.; Jiang, H.-L. Natl. Sci. Rev. 2020, 7, 37.  doi: 10.1093/nsr/nwz147

    25. [25]

      Qiao, W.; Song, T.; Zhao, B. Chin. J. Chem. 2019, 37, 474.  doi: 10.1002/cjoc.201800587

    26. [26]

      Gao, B.; Zhou, J.; Wang, H.; Zhang, G.; He, J.; Xu, Q.; Li, N.; Chen, D.; Li, H.; Lu, J. Chin. J. Chem. 2019, 37, 148.  doi: 10.1002/cjoc.201800440

    27. [27]

      Zhang, P.; Li, H.; Veith, G. M.; Dai, S. Adv. Mater. 2015, 27, 234.  doi: 10.1002/adma.201403299

    28. [28]

      Huang, Y.; Wang, Q.; Liang, J.; Wang, X.; Cao, R. J. Am. Chem. Soc. 2016, 138, 10104.  doi: 10.1021/jacs.6b06185

    29. [29]

      Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J. Dalton Trans. 2011, 40, 321.  doi: 10.1039/C0DT00708K

    30. [30]

      Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. Angew. Chem., Int. Ed. 2012, 51, 7440.  doi: 10.1002/anie.201202471

    31. [31]

      Sun, J.-K.; Zhan, W.-W.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2015, 137, 7063.  doi: 10.1021/jacs.5b04029

    32. [32]

      Zhang, S.; Liu, Y.; Li, D.; Wang, Q.; Ran, F. Appl. Surf. Sci. 2020, 505, 144553.  doi: 10.1016/j.apsusc.2019.144553

    33. [33]

      Gao, Z.-Z.; Wang, Z.-K.; Wei, L.; Yin, G.; Tian, J.; Liu, C.-Z.; Wang, H.; Zhang, D.-W.; Zhang, Y.-B.; Li, X.; Liu, Y.; Li, Z.-T. ACS Appl. Mater. Interfaces 2020, 12, 1404.  doi: 10.1021/acsami.9b19870

    34. [34]

      Luo, Y.; Peng, Y.; Liu, W.; Chen, F.; Wang, B. Chem. Eur. J. 2017, 23, 8879.  doi: 10.1002/chem.201605794

    35. [35]

      Xiao, J.-D.; Shang, Q.; Xiong, Y.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. Angew. Chem., Int. Ed. 2016, 55, 9389.  doi: 10.1002/anie.201603990

    36. [36]

      Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. Angew. Chem., Int. Ed. 2012, 51, 3364.  doi: 10.1002/anie.201108357

    37. [37]

      Xu, H.-Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. J. Am. Chem. Soc. 2015, 137, 13440.  doi: 10.1021/jacs.5b08773

    38. [38]

      Liu, H.; Xu, C.; Li, D.; Jiang, H.-L. Angew. Chem., Int. Ed. 2018, 57, 5379.  doi: 10.1002/anie.201800320

    39. [39]

      Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Angew. Chem., Int. Ed. 2012, 51, 10307.  doi: 10.1002/anie.201204475

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(19)
  • Abstract views(1590)
  • HTML views(371)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return