Module Replacement of Gold Nanoparticles by a Pseudo-AGR Process
- Corresponding author: Gan Zibao, zbgan@iim.ac.cn Wu Zhikun, zkwu@issp.ac.cn † These authors contributed equally to this work.
Citation: Jin Fengming, Dong Hongwei, Zhao Yan, Zhuang Shengli, Liao Lingwen, Yan Nan, Gu Wanmiao, Zha Jun, Yuan Jinyun, Li Jin, Deng Haiteng, Gan Zibao, Yang Jinlong, Wu Zhikun. Module Replacement of Gold Nanoparticles by a Pseudo-AGR Process[J]. Acta Chimica Sinica, ;2020, 78(5): 407-411. doi: 10.6023/A20040134
Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318, 430.
doi: 10.1126/science.1148624
Negishi, Y.; Chaki, N. K.; Shichibu, Y.; Whetten, R. L.; Tsukuda, T. J. Am. Chem. Soc. 2007, 129, 11322.
doi: 10.1021/ja073580+
Sánchez-Castillo, A.; Noguez, C.; Garzón, I. L. J. Am. Chem. Soc. 2010, 132, 1504.
doi: 10.1021/ja907365f
Parker, J. F.; Fields-Zinna, C. A.; Murray, R. W. Acc. Chem. Res. 2010, 43, 1289.
doi: 10.1021/ar100048c
Desireddy, A.; Conn, B. E.; Guo, J.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U.; Bigioni, T. P. Nature 2013, 501, 399.
doi: 10.1038/nature12523
Yamazoe, S.; Koyasu, K.; Tsukuda, T. Acc. Chem. Res. 2014, 47, 816.
doi: 10.1021/ar400209a
Mathew, A.; Pradeep, T. Part. Part. Syst. Charact. 2014, 31, 1017.
doi: 10.1002/ppsc.201400033
Alhilaly, M. J.; Bootharaju, M. S.; Joshi, C. P.; Besong, T. M.; Emwas, A. H.; Juarez-Mosqueda, R.; Kaappa, S.; Malola, S.; Adil, K.; Shkurenko, A.; Hakkinen, H.; Eddaoudi, M.; Bakr, O. M. J. Am. Chem. Soc. 2016, 138, 14727.
doi: 10.1021/jacs.6b09007
Zhao, Y.; Zhuang, S.; Liao, L.; Wang, C.; Xia, N.; Gan, Z.; Gu, W.; Li, J.; Deng, H.; Wu, Z. J. Am. Chem. Soc. 2020, 142, 973.
doi: 10.1021/jacs.9b11017
Zhu, M.; Li, M.; Yao, C.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L.; Wu, Z. Acta Phys.-Chim. Sin. 2018, 34, 792.
doi: 10.3866/PKU.WHXB201710091
Qian, H.; Zhu, Y.; Jin, R. ACS Nano 2009, 3, 3795.
doi: 10.1021/nn901137h
Jin, R.; Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty, A.; Garg, N. J. Phys. Chem. Lett. 2010, 1, 2903.
doi: 10.1021/jz100944k
Wu, Z.; MacDonald, M. A.; Chen, J.; Zhang, P.; Jin, R. J. Am. Chem. Soc. 2011, 133, 9670.
doi: 10.1021/ja2028102
Knoppe, S.; Boudon, J.; Dolamic, I.; Dass, A.; Bürgi, T. Anal. Chem. 2011, 83, 5056.
doi: 10.1021/ac200789v
Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. J. Am. Chem. Soc. 2010, 132, 8280.
doi: 10.1021/ja103592z
Yang, H.; Wang, Y.; Huang, H.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. Nat. Commun. 2013, 4, 2422.
doi: 10.1038/ncomms3422
Chen, J.; Zhang, Q. F.; Williard, P. G.; Wang, L. S. Inorg. Chem. 2014, 53, 3932.
doi: 10.1021/ic500562r
Tian, S.; Li, Y.-Z.; Li, M.-B.; Yuan, J.; Yang, J.; Wu, Z.; Jin, R. Nat. Commun. 2015, 6, 8667.
doi: 10.1038/ncomms9667
Dass, A.; Theivendran, S.; Nimmala, P. R.; Kumara, C.; Jupally, V. R.; Fortunelli, A.; Sementa, L.; Barcaro, G.; Zuo, X.; Noll, B. C. J. Am. Chem. Soc. 2015, 137, 4610.
doi: 10.1021/ja513152h
Zeng, C.; Liu, C.; Chen, Y.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2016, 138, 8710.
doi: 10.1021/jacs.6b04835
Wan, X.-K.; Cheng, X.-L.; Tang, Q.; Han, Y.-Z.; Hu, G.; Jiang, D. E.; Wang, Q.-M. J. Am. Chem. Soc. 2017, 139, 9451.
doi: 10.1021/jacs.7b04622
Zhang, S.-S.; Feng, L.; Senanayake, R. D.; Aikens, C. M.; Wang, X.-P.; Zhao, Q.-Q.; Tung, C.-H.; Sun, D. Chem. Sci. 2018, 9, 1251.
doi: 10.1039/C7SC03566G
Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L. Science 1998, 280, 2098.
doi: 10.1126/science.280.5372.2098
Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. J. Am. Chem. Soc. 2009, 131, 7086.
doi: 10.1021/ja810045y
Gao, Y.; Shao, N.; Pei, Y.; Zeng, X. C. Nano Lett. 2010, 10, 1055.
doi: 10.1021/nl100017u
Luo, Z.; Zheng, K.; Xie, J. Chem. Commun. 2014, 50, 5143.
doi: 10.1039/C3CC47512C
Azubel, M.; Koivisto, J.; Malola, S.; Bushnell, D.; Hura, G. L.; Koh, A. L.; Tsunoyama, H.; Tsukuda, T.; Pettersson, M.; Häkkinen, H.; Kornberg, R. D. Science 2014, 345, 909.
doi: 10.1126/science.1251959
Li, M.; Tian, S.; Wu, Z. Chin. J. Chem. 2017, 35, 567.
doi: 10.1002/cjoc.201600526
Zeng, C.; Liu, C.; Chen, Y.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2014, 136, 11922.
doi: 10.1021/ja506802n
Song, Y.; Abroshan, H.; Chai, J.; Kang, X.; Kim, H.; Zhu, M.; Jin, R. Chem. Mater. 2017, 29, 3055.
doi: 10.1021/acs.chemmater.7b00058
Yao, C.; Tian, S.; Liao, L.; Liu, X.; Xia, N.; Yan, N.; Gan, Z.; Wu, Z. Nanoscale 2015, 7, 16200.
doi: 10.1039/C5NR04760A
Zeng, C.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 10011.
doi: 10.1021/ja404058q
Xia, N.; Gan, Z.; Liao, L.; Zhuang, S.; Wu, Z. Chem. Commun. 2017, 53, 11646.
doi: 10.1039/C7CC06210A
Dainese, T.; Antonello, S.; Bogialli, S.; Fei, W.; Venzo, A.; Maran, F. ACS Nano 2018, 12, 7057.
doi: 10.1021/acsnano.8b02780
Li, Q.; Luo, T.; Taylor, M. G.; Wang, S.; Zhu, X.; Song, Y.; Mpourmpakis, G.; Rosi, N. L.; Jin, R. Sci. Adv. 2017, 3, e1603193.
doi: 10.1126/sciadv.1603193
Wu, Z. Acta Phys.-Chim. Sin. 2017, 33, 1930(in Chinese).
doi: 10.3866/PKU.WHXB201706026
Wu, Z. Angew. Chem. Int. Ed. 2012, 51, 2934.
doi: 10.1002/anie.201107822
Tian, S.; Yao, C.; Liao, L.; Xia, N.; Wu, Z. Chem. Commun. 2015, 51, 11773.
doi: 10.1039/C5CC03267A
Gan, Z.; Xia, N.; Wu, Z. Acc. Chem. Res. 2018, 51, 2774.
doi: 10.1021/acs.accounts.8b00374
Yao, C.; Lin, Y.; Yuan, J.; Liao, L.; Zhu, M.; Weng, L.; Yang, J.; Wu, Z. J. Am. Chem. Soc. 2015, 137, 15350.
doi: 10.1021/jacs.5b09627
Yao, C.; Lin, Y.; Yuan, J.; Liao, L.; Zhu, M.; Weng, L.; Yang, J.; Wu, Z. J. Am. Chem. Soc. 2015, 137, 15350.
doi: 10.1021/jacs.5b09627
Liao, L.; Zhou, S.; Dai, Y.; Liu, L.; Yao, C.; Fu, C.; Yang, J.; Wu, Z. J. Am. Chem. Soc. 2015, 137, 9511.
doi: 10.1021/jacs.5b03483
Zhu, M.; Wang, P.; Yan, N.; Qi, C.; He, L.; Zhao, Y.; Xia, N.; Yao, C.; Li, J.; Deng, H.; Zhu, Y.; Pei, Y.; Wu, Z. Angew. Chem. Int. Ed. 2018, 57, 4500.
doi: 10.1002/anie.201800877
Zhang, W.; Zhuang, S.; Liao, L.; Dong, H.; Xia, N.; Li, J.; Deng, H.; Wu, Z. Inorg. Chem. 2019, 58, 5388.
doi: 10.1021/acs.inorgchem.9b00125
Gan, Z.; Chen, J.; Liao, L.; Zhang, H.; Wu, Z. J. Phys. Chem. Lett. 2018, 9, 204.
doi: 10.1021/acs.jpclett.7b02982
Das, A.; Liu, C.; Byun, H. Y.; Nobusada, K.; Zhao, S.; Rosi, N.; Jin, R. Angew. Chem. Int. Ed. 2015, 54, 3140.
doi: 10.1002/anie.201410161
Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 18264.
doi: 10.1021/ja409177s
Chen, Y.; Liu, C.; Tang, Q.; Zeng, C.; Higaki, T.; Das, A.; Jiang, D. E.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2016, 138, 1482.
doi: 10.1021/jacs.5b12094
Dong, H.; Liao, L.; Zhuang, S.; Yao, C.; Chen, J.; Tian, S.; Zhu, M.; Liu, X.; Li, L.; Wu, Z. Nanoscale 2017, 9, 3742.
doi: 10.1039/C6NR09724C
Dong, H.; Liao, L.; Wu, Z. J. Phys. Chem. Lett. 2017, 8, 5338.
doi: 10.1021/acs.jpclett.7b02459
Zhuang, S.; Liao, L.; Yuan, J.; Wang, C.; Zhao, Y.; Xia, N.; Gan, Z.; Gu, W.; Li, J.; Deng, H.; Yang, J.; Wu, Z. Angew. Chem. Int. Ed. 2018, 57, 15450.
doi: 10.1002/anie.201808997
Liao, L.; Zhuang, S.; Wang, P.; Xu, Y.; Yan, N.; Dong, H.; Wang, C.; Zhao, Y.; Xia, N.; Li, J.; Deng, H.; Pei, Y.; Tian, S. K.; Wu, Z. Angew. Chem. Int. Ed. 2017, 56, 12644.
doi: 10.1002/anie.201707582
Wu, Z.; Jin, R. Nano Lett. 2010, 10, 2568.
doi: 10.1021/nl101225f
Yu, Y.; Luo, Z.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D. E.; Xie, J. J. Am. Chem. Soc. 2014, 136, 1246.
doi: 10.1021/ja411643u
Wang, S.; Zhu, X.; Cao, T.; Zhu, M. Nanoscale 2014, 6, 5777.
doi: 10.1039/c3nr06722j
Pyo, K.; Thanthirige, V. D.; Kwak, K.; Pandurangan, P.; Ramakrishna, G.; Lee, D. J. Am. Chem. Soc. 2015, 137, 8244.
doi: 10.1021/jacs.5b04210
Gan, Z.; Lin, Y.; Luo, L.; Han, G.; Liu, W.; Liu, Z.; Yao, C.; Weng, L.; Liao, L.; Chen, J.; Liu, X.; Luo, Y.; Wang, C.; Wei, S.; Wu, Z. Angew. Chem. Int. Ed. 2016, 55, 11567.
doi: 10.1002/anie.201606661
Goswami, N.; Yao, Q.; Luo, Z.; Li, J.; Chen, T.; Xie, J. J. Phys. Chem. Lett. 2016, 7, 962.
doi: 10.1021/acs.jpclett.5b02765
Sugiuchi, M.; Maeba, J.; Okubo, N.; Iwamura, M.; Nozaki, K.; Konishi, K. J. Am. Chem. Soc. 2017, 139, 17731.
doi: 10.1021/jacs.7b10201
Gan, Z.; Chen, J.; Wang, J.; Wang, C.; Li, M. B.; Yao, C.; Zhuang, S.; Xu, A.; Li, L.; Wu, Z. Nat. Commun. 2017, 8, 14739.
doi: 10.1038/ncomms14739
Zhuang, S.; Liao, L.; Yuan, J.; Xia, N.; Zhao, Y.; Wang, C.; Gan, Z.; Yan, N.; He, L.; Li, J.; Deng, H.; Guan, Z.; Yang, J.; Wu, Z. Angew. Chem. Int. Ed. 2019, 58, 4510.
doi: 10.1002/anie.201813426
Wang, P. Environ. Sci.:Nano 2018, 5, 1078.
doi: 10.1039/C8EN00156A
Jin, Y.; Chang, J.; Shi, Y.; Shi, L.; Hong, S.; Wang, P. J. Mater. Chem. A 2018, 6, 7942.
doi: 10.1039/C8TA00187A
Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115.
doi: 10.1021/ja057254a
Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Lasers Med. Sci. 2008, 23, 217.
doi: 10.1007/s10103-007-0470-x
Chen, J.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M.; Gidding, M.; Welch, M. J.; Xia, Y. Small 2010, 6, 811.
doi: 10.1002/smll.200902216
Tang, S.; Huang, X.; Zheng, N. Chem. Commun. 2011, 47, 3948.
doi: 10.1039/c1cc10451a
Abadeer, N. S.; Murphy, C. J. J. Phys. Chem. C 2016, 120, 4691.
doi: 10.1021/acs.jpcc.5b11232
Liu, Y.; Yang, Z.; Huang, X.; Yu, G.; Wang, S.; Zhou, Z.; Shen, Z.; Fan, W.; Liu, Y.; Davisson, M.; Kalish, H.; Niu, G.; Nie, Z.; Chen, X. ACS Nano 2018, 12, 8129.
doi: 10.1021/acsnano.8b02980
Lu, B.; Chen, Y.; Li, P.; Wang, B.; Mullen, K.; Yin, M. Nat. Commun. 2019, 10, 767.
doi: 10.1038/s41467-019-08434-4
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
Wenjia Wang , Xingyue He , Xiaojie Wang , Tiantian Zhao , Osamu Muraoka , Genzoh Tanabe , Weijia Xie , Tianjiao Zhou , Lei Xing , Qingri Jin , Hulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656
Xiangqian Cao , Chenkai Yang , Xiaodong Zhu , Mengxin Zhao , Yilin Yan , Zhengnan Huang , Jinming Cai , Jingming Zhuang , Shengzhou Li , Wei Li , Bing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199
Hang Meng , Bicheng Zhu , Ruolun Sun , Zixuan Liu , Shaowen Cao , Kan Zhang , Jiaguo Yu , Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410
Yiqiao Chen , Ao Liu , Biwen Yang , Zhenzhen Li , Binggang Ye , Zhouyi Guo , Zhiming Liu , Haolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295
Xiao-Tong Sun , Hao-Fei Ni , Yi Zhang , Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212
Tiantian Gong , Yanan Chen , Shuo Wang , Miao Wang , Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370
Huan Hu , Ying Zhang , Shi-Shuang Huang , Zhi-Gang Li , Yungui Liu , Rui Feng , Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395
Xuan Zhu , Lin Zhou , Xiao-Yun Huang , Yan-Ling Luo , Xin Deng , Xin Yan , Yan-Juan Wang , Yan Qin , Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Min Huang , Ru Cheng , Shuai Wen , Liangtong Li , Jie Gao , Xiaohui Zhao , Chunmei Li , Hongyan Zou , Jian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379
Ji Liu , Dongsheng He , Tianjiao Hao , Yumin Hu , Yan Zhao , Zhen Li , Chang Liu , Daquan Chen , Qiyue Wang , Xiaofei Xin , Yan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296
Ya-Wen Zhang , Ming-Ming Gan , Li-Ying Sun , Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356
Feng Cui , Fangman Chen , Xiaochun Xie , Chenyang Guo , Kai Xiao , Ziping Wu , Yinglu Chen , Junna Lu , Feixia Ruan , Chuanxu Cheng , Chao Yang , Dan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681
Bohan Chen , Liming Gong , Jing Feng , Mingji Jin , Liqing Chen , Zhonggao Gao , Wei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654