Citation: Yan Tao, Liu Zhenhua, Song Xinyue, Zhang Shusheng. Construction and Development of Tumor Microenvironment Stimulus-Responsive Upconversion Photodynamic Diagnosis and Treatment System[J]. Acta Chimica Sinica, ;2020, 78(7): 657-669. doi: 10.6023/A20040132 shu

Construction and Development of Tumor Microenvironment Stimulus-Responsive Upconversion Photodynamic Diagnosis and Treatment System

  • Corresponding author: Song Xinyue, songxinyue428@163.com Zhang Shusheng, shushzhang@126.com
  • Received Date: 29 April 2020
    Available Online: 15 June 2020

    Fund Project: the Key Research Plan of Shandong Province 2017GGX40110the Nature Science Foundation of Shandong Province ZR2018ZC0231the National Natural Science Foundation of China 21775063Project supported by the National Natural Science Foundation of China (No. 21775063), the Nature Science Foundation of Shandong Province (No. ZR2018ZC0231) and the Key Research Plan of Shandong Province (No. 2017GGX40110)

Figures(24)

  • Photodynamic therapy (PDT) is a new type of non-invasive tumor therapy, which has the advantages of less trauma and toxicity, good selectivity, no drug resistance and repeatable treatment. Thus, PDT has achieved remarkable results in the treatment of cancer. In order to increase its depth of tissue penetration, researchers proposed to build novel PDT nano-theranostic systems based on upconversion nanoparticles (referred as upconversion photodynamic nanotheranostic system). Based on the luminescence resonance energy transfer process, upconversion photodynamic nanotheranostic systems use the emitted fluorescence of upconversion nanoparticles which is excited by the near-infrared laser to further excite the loaded photosensitizer, thus it is advantageous to the treatment of deep tumors. Via the multi-functional structure design, the newly developed upconversion photodynamic nanotheranostic agent could achieve the targeted transportation, imaging diagnosis and stimulation response for the achievement of on-demand treatment, which is the trend for the development of nanomedicine in the future. At present, researchers pay more and more attention to the construction of tumor microenvironment responsive nanotheranostic system, in order to improve the targeting to the tumor section, improve the PDT efficacy, and reduce the toxicity to the surrounding normal tissues. This work mainly discusses the construction and development of upconversion nanotheranostic systems based on the stimulation of pH, enzyme and hydrogen peroxide. In addition, we prospect its development in the future.
  • 加载中
    1. [1]

      Park, Y. I.; Lee, K. T.; Suh, Y. D.; Hyeon, T. Chem. Soc. Rev. 2015, 44, 1302.  doi: 10.1039/C4CS00173G

    2. [2]

      Liu, J. L.; Liu, Y.; Liu, Q.; Li, C. Y.; Sun, L. N.; Li, F. Y. J. Am. Chem. Soc. 2011, 133, 15276.  doi: 10.1021/ja205907y

    3. [3]

      Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Prasad, P. N. Adv. Funct. Mater. 2009, 19, 853.  doi: 10.1002/adfm.200800765

    4. [4]

      Yi, G. S.; Peng, Y. F.; Gao, Z. Q, Chem. Mater. 2011, 23, 2729.  doi: 10.1021/cm103175s

    5. [5]

      Auzel, F. E. P. IEEE. 1973, 61, 758.  doi: 10.1109/PROC.1973.9155

    6. [6]

      Yi, G. S.; Chow, G. M. Adv. Funct. Mater. 2006, 16, 2324.  doi: 10.1002/adfm.200600053

    7. [7]

      Liu, C. H.; Wang, H.; Li, X.; Chen, D. P. J. Mater. Chem. 2009, 19, 3546.  doi: 10.1039/b820254k

    8. [8]

      Zijlmans, H. J. M. A. A.; Bonnet, J.; Burton, J.; Kardos, K.; Vail, T.; Niedbala, R. S.; Tanke, H. J. Anal. Biochem. 1999, 267, 30.  doi: 10.1006/abio.1998.2965

    9. [9]

      Chen, C.; Sun, L. D.; Li, Z. X.; Li, L. L.; Zhang, J.; Zhang, Y. W.; Yan, C. H. Langmuir 2010, 26, 8797.  doi: 10.1021/la904545a

    10. [10]

      Wang, Y. F.; Li, L. M.; Xu, T. Y.; Bai, Y. X.; Xie, R.; Yang, P. P. J. Mod. Oncol. 2017, 25, 1489(in Chinese).  doi: 10.3969/j.issn.1672-4992.2017.09.039

    11. [11]

      Pan, Y. S.; Ding, J. Guangzhou Chem. Ind. 2016, 12, 33(in Chinese).

    12. [12]

      Qian, H. S.; Guo, H, C.; Ho, P. C. L.; Mahendran, R.; Yong, Z. Small 2009, 5, 2285.  doi: 10.1002/smll.200900692

    13. [13]

      Zhang, P.; Steelant, W.; Kumar, M.; Scholfield, M. J. Am. Chem. Soc. 2007, 129, 4526.  doi: 10.1021/ja0700707

    14. [14]

      Wang, C.; Tao, H. Q.; Cheng, L.; Liu, Z. Biomaterials 2011, 32, 6145.  doi: 10.1016/j.biomaterials.2011.05.007

    15. [15]

      Hamblin, M. R. Dalton Trans. 2018, 47, 8571.  doi: 10.1039/C8DT00087E

    16. [16]

      Cheng, F.; Huang, L. T.; Wang, H. H.; Liu, Y. J.; Kandhadi, J.; Wang, H.; Ji, L. N.; Liu, H. Y. Chin. J. Chem. 2017, 35, 86.  doi: 10.1002/cjoc.201600633

    17. [17]

      Li, M. L.; Peng, X. J. Acta Chim. Sinica 2016, 74, 959(in Chinese).  doi: 10.6023/A16100553

    18. [18]

      Feng, T.; Xue, Z. B.; Yin, J. J.; Jiang, X.; Feng, Y. Q.; Meng, S. X. Chin. J. Org. Chem. 2019, 39, 1891(in Chinese).

    19. [19]

      Feng, L. L.; He, F.; Liu, B.; Yang, G. X.; Gai, S. L.; Yang, P. P.; Li, C. X.; Dai, Y. L.; Lv, R. C.; Lin, J. Chem. Mater. 2016, 28, 7935.  doi: 10.1021/acs.chemmater.6b03598

    20. [20]

      Chan, M. H.; Chen, C. W.; Lee, I. J.; Chan, Y. C.; Tu, D. T.; Hsiao, M.; Chen, C. H.; Chen, X. Y.; Liu, R. S. Inorg. Chem. 2016, 55, 10267.  doi: 10.1021/acs.inorgchem.6b01522

    21. [21]

      Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156(in Chinese).
       

    22. [22]

      Li, Y. F.; Di, Z. H.; Gao, J. H.; Cheng, P.; Di, C. Z.; Zhang, G.; Liu, B.; Shi, X. H.; Sun, L. D.; Li, L. L.; Yan, C. H. J. Am. Chem. Soc. 2017, 139, 13804.  doi: 10.1021/jacs.7b07302

    23. [23]

      Feng, J.; Xu, Z.; Dong, P.; Yu, W. Q.; Liu, F.; Jiang, Q. Y.; Wang, F.; Liu, X. Q. J. Mater. Chem. B 2019, 7, 994.  doi: 10.1039/C8TB02815J

    24. [24]

      Yao, J. Z.; Liu, Y.; Wang, J. W.; Jiang, Q.; She, D. J.; Guo, H. S.; Sun, N. R.; Pang, Z. Q.; Deng, C. H.; Yang, W. L.; Shen, S. Biomaterials 2019, 195, 51.  doi: 10.1016/j.biomaterials.2018.12.029

    25. [25]

      Yue, Z. H.; Hong, T. T.; Song, X. Y.; Wang, Z. H. Chem. Commun. 2018, 54, 10618.  doi: 10.1039/C8CC05121F

    26. [26]

      Song, X. Y.; Yue, Z. H.; Hong, T. T.; Wang, Z. H.; Zhang, S. S. Anal. Chem. 2019, 91, 8549.  doi: 10.1021/acs.analchem.9b01805

    27. [27]

      Liu, K.; Liu, X. M.; Zeng, Q. H.; Zhang, Y. L.; Tu, L. P.; Liu, T.; Kong, X. G.; Wang, Y. H.; Cao, F.; Lambrechts, S. A. G. ACS Nano 2012, 6, 4054.  doi: 10.1021/nn300436b

    28. [28]

      Kumar, B.; Murali, A.; Bharath, A. B.; Giri, S. Nanotechnology 2019, 30, 315102.  doi: 10.1088/1361-6528/ab116e

    29. [29]

      Kostiv, U.; Patsula, V.; Noculak, A.; Podhorodecki, A.; Vetvicka, D.; Pouckova, P.; Sedlakova, Z.; Horak, D. ChemMedChem 2017, 12, 2066.  doi: 10.1002/cmdc.201700508

    30. [30]

      Feng, Y. S.; Wu, Y. N.; Zuo, J.; Tu, L. P.; Que, I.; Chang, Y. L.; Cruz, L. J.; Chan, A.; Zhang, H. Biomaterials 2019, 201, 33.  doi: 10.1016/j.biomaterials.2019.02.015

    31. [31]

      Abouelmagd, S. A.; Hyun, H.; Yeo, Y. Expert Opin. Drug Del. 2014, 11, 1601.  doi: 10.1517/17425247.2014.930434

    32. [32]

      Ju, M. J.; Pang, J. D.; Xu, L. G. Chin. J. Chem. 2017, 35, 1445.  doi: 10.1002/cjoc.201700070

    33. [33]

      Du, J. Z.; Du, X. J.; Mao, C. Q.; Wang, J. J. Am. Chem. Soc. 2011, 133, 17560.  doi: 10.1021/ja207150n

    34. [34]

      Lee, E. S.; Gao, Z. G.; Bae, Y. H. J. Control. Release 2008, 132, 164.  doi: 10.1016/j.jconrel.2008.05.003

    35. [35]

      Wang, Y. H.; Song, S. Y.; Zhang, S. T.; Zhang, H. J. Nano Today 2019, 25, 38.  doi: 10.1016/j.nantod.2019.02.007

    36. [36]

      Wang, C.; Cheng, L.; Liu, Y. M.; Wang, X. J.; Ma, X. X.; Deng, Z. Y.; Li, Y. G.; Liu, Z. Adv. Funct. Mater. 2013, 23, 3077.  doi: 10.1002/adfm.201202992

    37. [37]

      Wang, S.; Zhang, L.; Dong, C. H.; Su, L.; Wang, H. J.; Chang, J. Chem. Commun. 2015, 51, 406.  doi: 10.1039/C4CC08178A

    38. [38]

      Guan, Y.; Lu, H. G.; Li, W.; Zheng, Y. D.; Jiang, Z.; Zou, J. L.; Gao, H. ACS Appl. Mater. Inter. 2017, 9, 26731.  doi: 10.1021/acsami.7b07768

    39. [39]

      Li, F. Y.; Du, Y.; Liu, J. N.; Sun, H.; Wang, J.; Li, R. Q.; Kim, D.; Hyeon, T.; Ling, D. Adv. Mater. 2018, 30, 1802808.  doi: 10.1002/adma.201802808

    40. [40]

      Juarez, A. V.; Sosa, L. d. V.; Paul, A. L. D.; Costa, A. P.; Farina, M.; Leal, R. B.; Torres, A. I.; Pons, P. J. Photoch. Photobio. B 2015, 153, 445.  doi: 10.1016/j.jphotobiol.2015.10.030

    41. [41]

      Liu, X. M.; Fan, Z. Q.; Zhang, L.; Jin, Z.; Yan, D. M.; Zhang, Y. L.; Li, X. D.; Tu, L. P.; Xue, B.; Chang, Y. L.; Zhang, H.; Kong, X. G. Biomaterials 2017, 144, 73.  doi: 10.1016/j.biomaterials.2017.08.010

    42. [42]

      Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.; Augeri, D. J.; Belli, B. A.; Bruncko, M.; Deckwerth, T. L.; Dinges, J.; Hajduk, P. J.; Joseph, M. K.; Kitada, S.; Korsmeyer, S. J.; Kunzer, A. R.; Letai, A.; Li, C.; Mitten, M. J.; Nettesheim, D. G.; Ng, S. C.; Nimmer, P. M.; O'Connor, J. M.; Oleksijew, A.; Petros, A. M.; Reed, J. C.; Shen, W.; Tahir, S. K.; Thompson, C. B.; Tomaselli, K. J.; Wang, B.; Wendt, M. D.; Zhang, H. C.; Fesik, S. W.; Rosenberg, S. H. Nature 2005, 435, 677.  doi: 10.1038/nature03579

    43. [43]

      Liu, S. K.; Li, W. T.; Dong S. M.; Gai, S. L; Dong, Y. S.; Yang, D.; Dai, Y. L.; He, F.; Yang, P. P. ACS Appl. Mater. Inter. 2019, 11, 47659.  doi: 10.1021/acsami.9b11973

    44. [44]

      Yu, Z. Z.; Ge, Y. G.; Sun, Q. Q.; Pan, W.; Wan, X. Y.; Li, N.; Tang, B. Chem. Sci. 2018, 9, 3563.  doi: 10.1039/C8SC00098K

    45. [45]

      Lee, G. Y.; Qian, W. P.; Wang, L. Y.; Wang, Y. A.; Staley, C. A.; Satpathy, M.; Nie, S. M.; Mao, H.; Yang, L. ACS Nano 2013, 7, 2078.  doi: 10.1021/nn3043463

    46. [46]

      Li, Y. Y.; Zhang, X. B.; Zhang, Y.; Zhang, Y.; He, Y. L.; Liu, Y.; Ju, H. X. ACS Appl. Mater. Inter. 2020, 12, 19313.  doi: 10.1021/acsami.0c03432

    47. [47]

      Ai, X. Z.; Ho, C. J. H.; Aw, J.; Attia, A. B. E.; Mu, J.; Wang, Y.; Wang, X.; Wang, Y.; Liu, X. G.; Chen, H. B.; Gao, M. Y.; Chen, X. Y.; Yeow, E. K. L.; Liu, G.; Olivo, M.; Xing, B. G. Nat. Commun. 2016, 7, 10432.  doi: 10.1038/ncomms10432

    48. [48]

      Dickinson, B. C.; Chang, C. J. Nat. Chem. Biol. 2011, 7, 504.  doi: 10.1038/nchembio.607

    49. [49]

      Cai, H. J.; Shen, T. T.; Zhang, J.; Shan, C. F.; Jia, J. G.; Li, X.; Liu, W. S.; Tang, Y. J. Mater. Chem. B 2017, 5, 2390.  doi: 10.1039/C7TB00314E

    50. [50]

      Liang, S.; Sun, C. Q.; Yang, P. P.; Ma, P. A.; Huang, S. S.; Cheng, Z. Y.; Yu, X. F.; Lin, J. Biomaterials 2020, 240, 119850.  doi: 10.1016/j.biomaterials.2020.119850

    51. [51]

      Gu, T. X.; Cheng, L.; Gong, F.; Xu, J.; Li, X.; Han, G. R.; Liu, Z. ACS Appl. Mater. Inter. 2018, 10, 15494.  doi: 10.1021/acsami.8b03238

    52. [52]

      Lin, J.; Ding, B. B.; Shao, S.; Xiao, H. H; Sun, C. Q.; Cai, X. C; Jiang, F.; Zhao, X. Y.; Ma, P. A. Nanoscale 2019, 11, 14654.  doi: 10.1039/C9NR04858H

    53. [53]

      Dong, S. M.; Xu, J. T.; Jia, T.; Xu, M. S.; Zhong, C. N.; Yang, G. X.; Li, J. R.; Yang, D.; He, F.; Gai, S. L.; Yang, P. P.; Lin, J. Chem. Sci. 2019, 10, 4259.  doi: 10.1039/C9SC00387H

    54. [54]

      Jia, T.; Xu, J. T.; Dong, S. M.; He, F.; Zhong, C. N.; Yang, G. X.; Bi, H. T.; Xu, M. S.; Hu, Y. K.; Yang, D.; Yang, P. P.; Lin, J. Chem. Sci. 2019, 10, 8618.  doi: 10.1039/C9SC01615E

    55. [55]

      Xu, J. T.; Han, W.; Yang, P. P.; Jia, T.; Dong, S. M.; Bi, H. T.; Gulzar, A.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Li, C. X. Adv. Funct. Mater. 2018, 28, 1803804.  doi: 10.1002/adfm.201803804

    56. [56]

      Zhao, L.; Ge, X. Q.; Zhao, H. J.; Shi, L. Y.; Capobianco, J.; Jin, D. Y.; Sun, L. N. ACS Applied Nano Materials 2018, 1, 1648.  doi: 10.1021/acsanm.8b00134

    57. [57]

      Yuan, J.; Cen, Y.; Kong, X. J.; Wu, S.; Liu, C. L.; Yu, R. Q.; Chu, X. ACS Appl. Mater. Inter. 2015, 7, 10548.  doi: 10.1021/acsami.5b02188

    58. [58]

      Ai, X. Z.; Hu, M.; Wang, Z. M.; Lyu, L.; Zhang, W. M.; Li, J.; Yang, H. H.; Lin, J.; Xing, B. G. Bioconjugate Chem. 2018, 29, 928.  doi: 10.1021/acs.bioconjchem.8b00068

    59. [59]

      Sun, Q. Q.; He, F.; Sum, C. Q.; Wang, X. X.; Li, C. X.; Xu, J. T.; Yang, D.; Bi, H. T.; Gia, S. L.; Yang, P. P. ACS Appl. Mater. Inter. 2018, 10, 33901.  doi: 10.1021/acsami.8b10207

    60. [60]

      Deng, R. R.; Xie, X. J.; Vendrell, M.; Chang, Y. T.; Liu, X. G. J. Am. Chem. Soc. 2011, 133, 20168.  doi: 10.1021/ja2100774

    61. [61]

      Fan, W. P.; Bu, W. B.; Shen, B.; He Q. J.; Cui, Z. W.; Liu, Y. Y.; Zheng, X. P.; Zhao, K. L.; Shi, J. L. Adv. Mater. 2015, 27, 4155.  doi: 10.1002/adma.201405141

    62. [62]

      Feng, L. L.; He, F.; Dai, Y. L.; Gai, S. L.; Zhong, C. N.; Li, C. X.; Yang, P. P. Biomater. Sci-UK. 2017, 5, 2456.  doi: 10.1039/C7BM00798A

    63. [63]

      Gu, T. X.; Cheng, L.; Gong, F.; Xu, J.; Li, X.; Liu, Z. ACS Appl. Mater. Inter. 2018, 10, 15494.  doi: 10.1021/acsami.8b03238

    64. [64]

      Xu, J. T.; He, F.; Cheng, Z. Y.; Lv, R. C.; Dai, Y. L.; Gulzar, A.; Liu, B.; Bi, H. T.; Yang, D.; Gai, S. L.; Yang, P. P.; Lin, J. Chem. Mater. 2017, 29, 7615.  doi: 10.1021/acs.chemmater.7b03461

    65. [65]

      Lv, R. C.; Wang, Y. X.; Liu, J.; Feng, M.; Yang, F.; Jiang, X.; Tian, J. ACS Biomater. Sci. Eng. 2019, 5, 3100.  doi: 10.1021/acsbiomaterials.9b00438

    66. [66]

      Zhang, C.; Chen, W. H.; Liu, L. H.; Qiu, W. X.; Yu, W. Y.; Zhang, X. Z. Adv. Funct. Mater. 2017, 27, 1700626.  doi: 10.1002/adfm.201700626

    67. [67]

      Jiang, W.; Zhang, C.; Ahmed, A.; Zhao, Y. L.; Deng, Y.; Ding, Y.; Cai, J. F.; Hu, Y. Adv. Healthc. Mater. 2019, 8, 1900972.  doi: 10.1002/adhm.201900972

    68. [68]

      Hu, P.; Wu, T.; Fan, W. P.; Chen, L.; Liu, Y. Y.; Ni, D. L.; Bu, W. B.; Shi, J. L. Biomaterials 2017, 141, 86.  doi: 10.1016/j.biomaterials.2017.06.035

    69. [69]

      Bi, H. T.; Dai, Y. L.; Yang, P. P.; Xu, J. T.; Yang, D.; Gai, S. L.; He, F.; Liu, B.; Zhong, C. N.; An, G. H.; Lin, J. Small 2018, 14, 1703809.  doi: 10.1002/smll.201703809

  • 加载中
    1. [1]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    2. [2]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    5. [5]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    6. [6]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    7. [7]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    10. [10]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    11. [11]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    12. [12]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    13. [13]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    14. [14]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    17. [17]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(18)
  • Abstract views(2507)
  • HTML views(506)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return