Citation: Gong Shaohua, Li Na, Tang Bo. Recent Progress in Regulating CRISPR-Cas9 System for Gene Editing[J]. Acta Chimica Sinica, ;2020, 78(7): 634-641. doi: 10.6023/A20040131 shu

Recent Progress in Regulating CRISPR-Cas9 System for Gene Editing

  • Corresponding author: Li Na, lina@sdnu.edu.cn
  • Received Date: 29 April 2020
    Available Online: 8 June 2020

    Fund Project: the National Natural Science Foundation of China 21775094the National Key R & D Program of China 2019YFA0210100the National Natural Science Foundation of China 21535004the Youth Innovation Science and Technology Program of Higher Education Institution of Shandong Province 2019KJC022the Key Research and Development Program of Shandong Province 2018YFJH0502Project supported by the National Key R & D Program of China (No. 2019YFA0210100), the National Natural Science Foundation of China (Nos. 21535004, 91753111, 21927881, 21874086, 21775094), the Key Research and Development Program of Shandong Province (No. 2018YFJH0502), and the Youth Innovation Science and Technology Program of Higher Education Institution of Shandong Province (No. 2019KJC022)the National Natural Science Foundation of China 21927881the National Natural Science Foundation of China 21874086the National Natural Science Foundation of China 91753111

Figures(8)

  • Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is an adaptive immune system used by many bacteria and archaea to defend the invasion of exogenous nucleic acids. CRISPR-Cas system in different species of archaea and bacteria has different components and working mechanisms. Depending on the numbers of effector proteins, CRISPR-Cas systems can be classified into two major types. CRISPR-Cas9, which is composed of Cas9 nuclease and sgRNA, belongs to class Ⅱ CRISPR-Cas system and can be used as a powerful genome editing tool. It can target and cleave the DNA sequence which contains protospacer adjacent motif (PAM, 5'-NGG-3') sequence. The DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or nonhomologous end joining (NHEJ) mechanism. Insertions or deletions (indels) can be introduced at targeted loci in the DSBs repair process. Due to its convenience, low cost and high efficiency, CRISPR-Cas9 has played an important role in promoting the development of gene editing in basic research and clinical medicine. However, off-target effect of CRISPR-Cas9 should not be neglected. The CRISPR-Cas9 is able to cleave the target DNA even when the sgRNA imperfectly matches with the target DNA, leading to the unwanted indels at nontargeted DNA loci, which limits the further application of genome editing, especially for the treatment of genetic diseases. Therefore, it is significant to reduce the off-target cleavage effect of CRISPR-Cas9. Many efforts have been devoted to realize the reduced off-target effect of CRISPR-Cas9. Among these methods, regulating the function of CRISPR-Cas9 at spatiotemporal dimension is a potential strategy to reduce the off-target effect of CRISPR-Cas9 system and improve the specificity of gene editing. In this review, we summarized the research advances in regulating the function of CRISPR-Cas9 and discussed the prospects and challenges of CRISPR-Cas9 regulation.
  • 加载中
    1. [1]

      Jiang, F.; Doudna, J. A. Annu. Rev. Biophys. 2017, 46, 505.  doi: 10.1146/annurev-biophys-062215-010822

    2. [2]

      Garcia-Doval, C.; Jinek, M. Curr. Opin. Struct. Biol. 2017, 47, 157.  doi: 10.1016/j.sbi.2017.10.015

    3. [3]

      Makarova, K. S.; Haft, D. H.; Barrangou, R.; Brouns, S. J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F. J.; Wolf, Y. I.; Yakunin, A. F.; van der Oost, J.; Koonin, E. V. Nat. Rev. Microbiol. 2011, 9, 467.  doi: 10.1038/nrmicro2577

    4. [4]

      Wang, H.; La Russa, M.; Qi, L. S. Annu. Rev. Biochem. 2016, 85, 227.  doi: 10.1146/annurev-biochem-060815-014607

    5. [5]

      Nunez, J. K.; Harrington, L. B.; Doudna, J. A. ACS Chem. Biol. 2016, 11, 681.  doi: 10.1021/acschembio.5b01019

    6. [6]

      Gasiunas, G.; Barrangou, R.; Horvath, P.; Siksnys, V. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15539.

    7. [7]

      Gutschner, T.; Haemmerle, M.; Genovese, G.; Draetta, G. F.; Chin, L. Cell Rep. 2016, 14, 1555.  doi: 10.1016/j.celrep.2016.01.019

    8. [8]

      Dow, L. E. Trends Mol. Med. 2015, 21, 609.  doi: 10.1016/j.molmed.2015.07.006

    9. [9]

      Pickar-Oliver, A.; Gersbach, C. A. Nat. Rev. Mol. Cell Biol. 2019, 20, 490.  doi: 10.1038/s41580-019-0131-5

    10. [10]

      LaFountaine, J. S.; Fathe, K.; Smyth, H. D. Int. J. Pharm. 2015, 494, 180.  doi: 10.1016/j.ijpharm.2015.08.029

    11. [11]

      Gupta, R. M.; Musunuru, K. J. Clin. Invest. 2014, 124, 4154.  doi: 10.1172/JCI72992

    12. [12]

      Gaj, T.; Gersbach, C. A.; Barbas, C. F. Trends Biotechnol. 2013, 31, 397.  doi: 10.1016/j.tibtech.2013.04.004

    13. [13]

      Doudna, J. A.; Charpentier, E. Science 2014, 346, 1258096.  doi: 10.1126/science.1258096

    14. [14]

      Hsu, P. D.; Lander, E. S.; Zhang, F. Cell 2014, 157, 1262.  doi: 10.1016/j.cell.2014.05.010

    15. [15]

      Platt, R. J.; Chen, S.; Zhou, Y.; Yim, M. J.; Swiech, L.; Kempton, H. R.; Dahlman, J. E.; Parnas, O.; Eisenhaure, T. M.; Jovanovic, M.; Graham, D. B.; Jhunjhunwala, S.; Heidenreich, M.; Xavier, R. J.; Langer, R.; Anderson, D. G.; Hacohen, N.; Regev, A.; Feng, G.; Sharp, P. A.; Zhang, F. Cell 2014, 159, 440.  doi: 10.1016/j.cell.2014.09.014

    16. [16]

      Carroll, K. J.; Makarewich, C. A.; McAnally, J.; Anderson, D. M.; Zentilin, L.; Liu, N.; Giacca, M.; Bassel-Duby, R.; Olson, E. N. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 338.  doi: 10.1073/pnas.1523918113

    17. [17]

      Wang, T.; Wei, J. J.; Sabatini, D. M.; Lander, E. S. Science 2014, 343, 80.  doi: 10.1126/science.1246981

    18. [18]

      Behan, F. M.; Iorio, F.; Picco, G.; Goncalves, E.; Beaver, C. M.; Migliardi, G.; Santos, R.; Rao, Y.; Sassi, F.; Pinnelli, M.; Ansari, R.; Harper, S.; Jackson, D. A.; McRae, R.; Pooley, R.; Wilkinson, P.; van der Meer, D.; Dow, D.; Buser-Doepner, C.; Bertotti, A.; Trusolino, L.; Stronach, E. A.; Saez-Rodriguez, J.; Yusa, K.; Garnett, M. J. Nature 2019, 568, 511.  doi: 10.1038/s41586-019-1103-9

    19. [19]

      Didovyk, A.; Borek, B.; Tsimring, L.; Hasty, J. Curr. Opin. Biotechnol. 2016, 40, 177.  doi: 10.1016/j.copbio.2016.06.003

    20. [20]

      Nihongaki, Y.; Furuhata, Y.; Otabe, T.; Hasegawa, S.; Yoshimoto, K.; Sato, M. Nat. Methods 2017, 14, 963.  doi: 10.1038/nmeth.4430

    21. [21]

      Ma, Y.; Wang, M.; Li, W.; Zhang, Z.; Zhang, X.; Wu, G.; Tan, T.; Cui, Z.; Zhang, X. E. Anal. Chem. 2017, 89, 12896.  doi: 10.1021/acs.analchem.7b03584

    22. [22]

      Chen, B.; Zou, W.; Xu, H.; Liang, Y.; Huang, B. Nat. Commun. 2018, 9, 1.

    23. [23]

      Wang, X.; Xiong, E.; Tian, T.; Cheng, M.; Lin, W.; Wang, H.; Zhang, G.; Sun, J.; Zhou, X. ACS Nano 2020, 14, 2497.  doi: 10.1021/acsnano.0c00022

    24. [24]

      Xu, W.; Jin, T.; Dai, Y.; Liu, C. C. Biosens. Bioelectron. 2020, 155, 112100.  doi: 10.1016/j.bios.2020.112100

    25. [25]

      De Ravin, S. S.; Li, L.; Wu, X.; Choi, U.; Allen, C.; Koontz, S.; Lee, J.; Theobald-Whiting, N.; Chu, J.; Garofalo, M.; Sweeney, C.; Kardava, L.; Moir, S.; Viley, A.; Natarajan, P.; Su, L.; Kuhns, D.; Zarember, K. A.; Peshwa, M. V.; Malech, H. L. Sci. Transl. Med. 2017, 9, eaah3480.  doi: 10.1126/scitranslmed.aah3480

    26. [26]

      Park, H.; Oh, J.; Shim, G.; Cho, B.; Chang, Y.; Kim, S.; Baek, S.; Kim, H.; Shin, J.; Choi, H.; Yoo, J.; Kim, J.; Jun, W.; Lee, M.; Lengner, C. J.; Oh, Y. K.; Kim, J. Nat. Neurosci. 2019, 22, 524.  doi: 10.1038/s41593-019-0352-0

    27. [27]

      Fu, Y.; Foden, J. A.; Khayter, C.; Maeder, M. L.; Reyon, D.; Joung, J. K.; Sander, J. D. Nat. Biotechnol. 2013, 31, 822.  doi: 10.1038/nbt.2623

    28. [28]

      Cradick, T. J.; Fine, E. J.; Antico, C. J.; Bao, G. Nucleic Acids Res. 2013, 41, 9584.  doi: 10.1093/nar/gkt714

    29. [29]

      Lin, Y.; Cradick, T. J.; Brown, M. T.; Deshmukh, H.; Ranjan, P.; Sarode, N.; Wile, B. M.; Vertino, P. M.; Stewart, F. J.; Bao, G. Nucleic Acids Res. 2014, 42, 7473.  doi: 10.1093/nar/gku402

    30. [30]

      Wu, X.; Scott, D. A.; Kriz, A. J.; Chiu, A. C.; Hsu, P. D.; Dadon, D. B.; Cheng, A. W.; Trevino, A. E.; Konermann, S.; Chen, S.; Jaenisch, R.; Zhang, F.; Sharp, P. A. Nat. Biotechnol. 2014, 32, 670.  doi: 10.1038/nbt.2889

    31. [31]

      Dominguez, A. A.; Lim, W. A.; Qi, L. S. Nat. Rev. Mol. Cell Biol. 2016, 17, 5.  doi: 10.1038/nrm.2015.2

    32. [32]

      Knott, G. J.; Doudna, J. A. Science 2018, 361, 866.  doi: 10.1126/science.aat5011

    33. [33]

      Zhang, X.-H.; Tee, L. Y.; Wang, X.-G.; Huang, Q.-S.; Yang, S.-H. Mol. Ther. Nucleic Acids 2015, 4, e264.  doi: 10.1038/mtna.2015.37

    34. [34]

      Ran, F. A.; Hsu, P. D.; Lin, C. Y.; Gootenberg, J. S.; Konermann, S.; Trevino, A. E.; Scott, D. A.; Inoue, A.; Matoba, S.; Zhang, Y.; Zhang, F. Cell 2013, 154, 1380.  doi: 10.1016/j.cell.2013.08.021

    35. [35]

      Fu, Y.; Sander, J. D.; Reyon, D.; Cascio, V. M.; Joung, J. K. Nat. Biotechnol. 2014, 32, 279.  doi: 10.1038/nbt.2808

    36. [36]

      Guilinger, J. P.; Thompson, D. B.; Liu, D. R. Nat. Biotechnol. 2014, 32, 577.  doi: 10.1038/nbt.2909

    37. [37]

      Nihongaki, Y.; Otabe, T.; Sato, M. Anal. Chem. 2018, 90, 429.  doi: 10.1021/acs.analchem.7b04757

    38. [38]

      Cai, W.; Luo, T.; Mao, L; Wang, M. Angew. Chem. Int. Ed. 2020, 10.1002/ange.202005644.

    39. [39]

      Hsu, P. D.; Scott, D. A.; Weinstein, J. A.; Ran, F. A.; Konermann, S.; Agarwala, V.; Li, Y.; Fine, E. J.; Wu, X.; Shalem, O.; Cradick, T. J.; Marraffini, L. A.; Bao, G.; Zhang, F. Nat. Biotechnol. 2013, 31, 827.  doi: 10.1038/nbt.2647

    40. [40]

      Mandegar, M. A.; Huebsch, N.; Frolov, E. B.; Shin, E.; Truong, A.; Olvera, M. P.; Chan, A. H.; Miyaoka, Y.; Holmes, K.; Spencer, C. I.; Judge, L. M.; Gordon, D. E.; Eskildsen, T. V.; Villalta, J. E.; Horlbeck, M. A.; Gilbert, L. A.; Krogan, N. J.; Sheikh, S. P.; Weissman, J. S.; Qi, L. S.; So, P. L.; Conklin, B. R. Cell Stem Cell 2016, 18, 541.  doi: 10.1016/j.stem.2016.01.022

    41. [41]

      Hoffmann, M. D.; Aschenbrenner, S.; Grosse, S.; Rapti, K.; Domenger, C.; Fakhiri, J.; Mastel, M.; Borner, K.; Eils, R.; Grimm, D.; Niopek, D. Nucleic Acids Res. 2019, 47, e75.  doi: 10.1093/nar/gkz271

    42. [42]

      Hirosawa, M.; Fujita, Y.; Saito, H. ACS Synth. Biol. 2019, 8, 1575.  doi: 10.1021/acssynbio.9b00073

    43. [43]

      Hanewich-Hollatz, M. H.; Chen, Z.; Hochrein, L. M.; Huang, J.; Pierce, N. A. ACS Cent. Sci. 2019, 5, 1241.  doi: 10.1021/acscentsci.9b00340

    44. [44]

      Zetsche, B.; Volz, S. E.; Zhang, F. Nat. Biotechnol. 2015, 33, 139.  doi: 10.1038/nbt.3149

    45. [45]

      Davis, K. M.; Pattanayak, V.; Thompson, D. B.; Zuris, J. A.; Liu, D. R. Nat. Chem. Biol. 2015, 11, 316.  doi: 10.1038/nchembio.1793

    46. [46]

      Liu, K. I.; Ramli, M. N.; Woo, C. W.; Wang, Y.; Zhao, T.; Zhang, X.; Yim, G. R.; Chong, B. Y.; Gowher, A.; Chua, M. Z.; Jung, J.; Lee, J. H.; Tan, M. H. Nat. Chem. Biol. 2016, 12, 980.  doi: 10.1038/nchembio.2179

    47. [47]

      Nguyen, D. P.; Miyaoka, Y.; Gilbert, L. A.; Mayerl, S. J.; Lee, B. H.; Weissman, J. S.; Conklin, B. R.; Wells, J. A. Nat. Commun. 2016, 7, 12009.  doi: 10.1038/ncomms12009

    48. [48]

      Maji, B.; Moore, C. L.; Zetsche, B.; Volz, S. E.; Zhang, F.; Shoulders, M. D.; Choudhary, A. Nat. Chem. Biol. 2017, 13, 9.  doi: 10.1038/nchembio.2224

    49. [49]

      Manna, D.; Maji, B.; Gangopadhyay, S. A.; Cox, K. J.; Zhou, Q.; Law, B. K.; Mazitschek, R.; Choudhary, A. Angew. Chem. Int. Ed. 2019, 58, 6285.  doi: 10.1002/anie.201900788

    50. [50]

      Senturk, S.; Shirole, N. H.; Nowak, D. G.; Corbo, V.; Pal, D.; Vaughan, A.; Tuveson, D. A.; Trotman, L. C.; Kinney, J. B.; Sordella, R. Nat. Commun. 2017, 8, 14370.  doi: 10.1038/ncomms14370

    51. [51]

      Rose, J. C.; Stephany, J. J.; Valente, W. J.; Trevillian, B. M.; Dang, H. V.; Bielas, J. H.; Maly, D. J.; Fowler, D. M. Nat. Methods 2017, 14, 891.  doi: 10.1038/nmeth.4368

    52. [52]

      Fontana, J.; Dong, C.; Ham, J. Y.; Zalatan, J. G.; Carothers, J. M. Biotechnol. J. 2018, 13, e1800069.  doi: 10.1002/biot.201800069

    53. [53]

      Tang, W.; Hu, J. H.; Liu, D. R. Nat. Commun. 2017, 8, 15939.  doi: 10.1038/ncomms15939

    54. [54]

      Lin, B.; An, Y.; Meng, L.; Zhang, H.; Song, J.; Zhu, Z.; Liu, W.; Song, Y.; Yang, C. Chem. Commun. 2019, 55, 12223.  doi: 10.1039/C9CC05531B

    55. [55]

      Kundert, K.; Lucas, J. E.; Watters, K. E.; Fellmann, C.; Ng, A. H.; Heineike, B. M.; Fitzsimmons, C. M.; Oakes, B. L.; Qu, J.; Prasad, N.; Rosenberg, O. S.; Savage, D. F.; El-Samad, H.; Doudna, J. A.; Kortemme, T. Nat. Commun. 2019, 10, 2127.  doi: 10.1038/s41467-019-09985-2

    56. [56]

      Habibian, M.; McKinlay, C.; Blake, T. R.; Kietrys, A. M.; Waymouth, R. M.; Wender, P. A.; Kool, E. T. Chem. Sci. 2020, 11, 1011.  doi: 10.1039/C9SC03639C

    57. [57]

      Wang, S.-R.; Wu, L.-Y.; Huang, H.-Y.; Xiong, W.; Liu, J.; Wei, L.; Yin, P.; Tian, T.; Zhou, X. Nat. Commun. 2020, 11, 91.  doi: 10.1038/s41467-019-13765-3

    58. [58]

      Nihongaki, Y.; Kawano, F.; Nakajima, T.; Sato, M. Nat. Biotechnol. 2015, 33, 755.  doi: 10.1038/nbt.3245

    59. [59]

      Hemphill, J.; Borchardt, E. K.; Brown, K.; Asokan, A.; Deiters, A. J. Am. Chem. Soc. 2015, 137, 5642.  doi: 10.1021/ja512664v

    60. [60]

      Zhou, X. X.; Zou, X.; Chung, H. K.; Gao, Y.; Liu, Y.; Qi, L. S.; Lin, M. Z. ACS Chem. Biol. 2018, 13, 443.  doi: 10.1021/acschembio.7b00603

    61. [61]

      Pawluk, A.; Davidson, A. R.; Maxwell, K. L. Nat. Rev. Microbiol. 2018, 16, 12.  doi: 10.1038/nrmicro.2017.120

    62. [62]

      Bubeck, F.; Hoffmann, M. D.; Harteveld, Z.; Aschenbrenner, S.; Bietz, A.; Waldhauer, M. C.; Borner, K.; Fakhiri, J.; Schmelas, C.; Dietz, L.; Grimm, D.; Correia, B. E.; Eils, R.; Niopek, D. Nat. Methods 2018, 15, 924.  doi: 10.1038/s41592-018-0178-9

    63. [63]

      Jain, P. K.; Ramanan, V.; Schepers, A. G.; Dalvie, N. S.; Panda, A.; Fleming, H. E.; Bhatia, S. N. Angew. Chem. Int. Ed. 2016, 55, 12440.  doi: 10.1002/anie.201606123

    64. [64]

      Gao, P.; Pan, W.; Li, N.; Tang, B. Chem. Sci. 2019, 10, 6035.  doi: 10.1039/C9SC01652J

    65. [65]

      Shao, J.; Wang, M.; Yu, G.; Zhu, S.; Yu, Y.; Heng, B. C.; Wu, J.; Ye, H. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E6722.  doi: 10.1073/pnas.1802448115

    66. [66]

      Wang, P.; Zhang, L.; Xie, Y.; Wang, N.; Tang, R.; Zheng, W.; Jiang, X. Adv. Sci. 2017, 4, 1700175.  doi: 10.1002/advs.201700175

    67. [67]

      Yue, H.; Zhou, X.; Cheng, M.; Xing, D. Nanoscale 2018, 10, 1063.  doi: 10.1039/C7NR07999K

    68. [68]

      Zhou, W.; Cui, H.; Ying, L.; Yu, X.-F. Angew. Chem. Int. Ed. 2018, 57, 10268.  doi: 10.1002/anie.201806941

    69. [69]

      Alsaiari, S. K.; Patil, S.; Alyami, M.; Alamoudi, K. O.; Aleisa, F. A.; Merzaban, J. S.; Li, M.; Khashab, N. M. J. Am. Chem. Soc. 2018, 140, 143.  doi: 10.1021/jacs.7b11754

    70. [70]

      Pan, Y.; Yang, J.; Luan, X.; Liu, X.; Li, X.; Yang, J.; Huang, T.; Sun, L.; Wang, Y.; Lin, Y.; Song, Y. Sci. Adv. 2019, 5, eaav7199.  doi: 10.1126/sciadv.aav7199

    71. [71]

      Peng, H.; Le, C.; Wu, J.; Li, X. F.; Zhang, H.; Le, X. C. ACS Nano 2020, 14, 2817.  doi: 10.1021/acsnano.9b05276

    72. [72]

      Wang, P.; Zhang, L.; Zheng, W.; Cong, L.; Guo, Z.; Xie, Y.; Wang, L.; Tang, R.; Feng, Q.; Hamada, Y.; Gonda, K.; Hu, Z.; Wu, X.; Jiang, X. Angew. Chem. Int. Ed. 2018, 57, 1491.  doi: 10.1002/anie.201708689

    73. [73]

      Chen, X.; Chen, Y.; Xin, H.; Wan, T.; Ping, Y. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 2395.  doi: 10.1073/pnas.1912220117

    74. [74]

      Lyu, Y.; He, S.; Li, J.; Jiang, Y.; Sun, H.; Miao, Y.; Pu, K. Angew. Chem. Int. Ed. 2019, 58, 18197.  doi: 10.1002/anie.201909264

  • 加载中
    1. [1]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    2. [2]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    6. [6]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    7. [7]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    8. [8]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    9. [9]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    10. [10]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    13. [13]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    19. [19]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    20. [20]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

Metrics
  • PDF Downloads(24)
  • Abstract views(1854)
  • HTML views(314)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return