Citation: Chen Yang, Du Yadan, Wang Yong, Liu Puxu, Li Libo, Li Jinping. Ammonia Modification on UTSA-280 for C2H4/C2H6 Separation[J]. Acta Chimica Sinica, ;2020, 78(6): 534-539. doi: 10.6023/A20040130 shu

Ammonia Modification on UTSA-280 for C2H4/C2H6 Separation

  • Corresponding author: Li Libo, lilibo908@hotmail.com
  • Received Date: 29 April 2020
    Available Online: 24 May 2020

    Fund Project: Natural Science Foundation for Young Scientists of Shanxi Province 201901D211053the National Natural Science Foundation of China 21908155the National Natural Science Foundation of China 21922810Project supported by the National Natural Science Foundation of China (Nos. 21908155, 21922810), Natural Science Foundation for Young Scientists of Shanxi Province (No. 201901D211053) and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

Figures(9)

  • Recovering C2H4 from refinery gas is an effective way to broaden the source of ethylene. However, it's a challenging task to separate C2H4 and C2H6 due to their very close physical properties and molecular size. Metal-organic frameworks (MOFs) are shown broad prospects in the field of light hydrocarbon separation in recent years. In this work, NH3 is used to modify the structure of UTSA-280, the efficient separation of C2H4/C2H6 can be achieved through the adjustment of one-dimensional channels. UTSA-280 has undergone stepwise adsorption of ammonia gas at 298 K and 100 kPa. After partial ammonia removal, we obtained the modified UTSA-280 that ammonia adsorption modification with a mass loading of 5.6% for UTSA-280-M1 and 2.8% for UTSA-280-M2. The NH3 modified UTSA-280 shows a unique ultramicroporous structure that can enhance the adsorption of C2H4 and does not adsorb the slightly larger C2H6, achieving the ideal C2H4/C2H6 adsorption selectivity (more than 1000). Ammonia molecules play the role of perfectly adjusting the size of one-dimensional channels and realize the ideal screening effect of C2H4/C2H6. The C2H4 adsorption capacity of NH3 modified UTSA-280-M2 can be improved to 2.83 mmol/g at 298 K and 100 kPa (an increase of 29% compared with initial material). And its ultramicroporous structure can fully block the adsorption of C2H6, which finally achieves a C2H4/C2H6 selectivity over 1200. Grand Canonical Monte Carlo (GCMC) simulation of C2H4/C2H6 mixed gases (equal volume) adsorption results showed that the modified UTSA-280 had more C2H4 adsorption distribution in the mixed components than C2H6. Through the C2H4/C2H6 mixed gases breakthrough test at 298 K, NH3 modified UTSA-280-M2 shows a separation time of more than 48 min, which is more than the initial 25 min. Compared with the unmodified material, the separation performance is nearly doubled. Scalable synthesis, stable structure, and the advantages of controllable performance after ammonia modification have prompted this material to have great prospects in the industrialization of C2H4/C2H6 separation.
  • 加载中
    1. [1]

      Zeng, H.; Xie, X. J.; Xie, M.; Huang, Y. L.; Luo, D.; Wang, T.; Zhao, Y.; Lu, W.; Li, D. J. Am. Chem. Soc. 2019, 141, 20390.  doi: 10.1021/jacs.9b10923

    2. [2]

      Wang, X.; Niu, Z.; Al-Enizi, A. M.; Nafady, A.; Wu, Y.; Aguila, B.; Verma, G.; Wojtas, L.; Chen, Y.-S.; Li, Z.; Ma, S. J. Mater. Chem. A 2019, 7, 13585.  doi: 10.1039/C9TA02822F

    3. [3]

      Huang, L. Yunnan Chem. Technol. 2019, 46, 4.

    4. [4]

      Amghizar, I.; Vandewalle, L. A.; Van Geem, K. M.; Marin, G. B. Engineering 2017, 3, 171.  doi: 10.1016/J.ENG.2017.02.006

    5. [5]

      Chen, J.-M.; Yu, B.; Wei, Y.-M. Appl. Energy 2018, 224, 160.  doi: 10.1016/j.apenergy.2018.04.051

    6. [6]

      Tan, Y. W.; Ding, X. Guangdong Chem. Ind. 2017, 44, 107.
       

    7. [7]

      Luo, X.; Wang, M.; Li, X.; Li, Y.; Chen, C.; Sui, H. Fuel 2015, 158, 424.  doi: 10.1016/j.fuel.2015.05.035

    8. [8]

      Liu, H.; Mu, L.; Liu, B.; Zhang, X.; Wang, J.; Wang, B.; Sun, C.; Yang, L.; Wang, H.; Xiao, P.; Chen, G. Ind. Eng. Chem. Res. 2013, 52, 2707.  doi: 10.1021/ie3028526

    9. [9]

      Yao, R. Y. Petro. Proce. Petrochem. 2014, 45, 47.
       

    10. [10]

      Li, L.; Lin, R.-B.; Krishna, R.; Li, H.; Xiang, S.; Wu, H.; Li, J.; Zhou, W.; Chen, B. Science 2018, 362, 443.  doi: 10.1126/science.aat0586

    11. [11]

      Zhang, L.; Li, L.; Hu, E.; Yang, L.; Shao, K.; Yao, L.; Jiang, K.; Cui, Y.; Yang, Y.; Li, B.; Chen, B.; Qian, G. Adv. Sci. 2020, 7, 1901918.  doi: 10.1002/advs.201901918

    12. [12]

      Wang, Y.; Yuan, S.; Hu, Z.; Kundu, T.; Zhang, J.; Peh, S. B.; Cheng, Y.; Dong, J.; Yuan, D.; Zhou, H.-C.; Zhao, D. ACS Sustainable Chem. Eng. 2019, 7, 7118.  doi: 10.1021/acssuschemeng.9b00062

    13. [13]

      Lan, T.; He, C.; Yang, L.; Li, J.; Li, L. Acta Petrol. Sin. (Petrol. Proc. Sec.) 2019, 35, 1219.

    14. [14]

      Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.  doi: 10.1126/science.1067208

    15. [15]

      Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chin. J. Chem. 2020, 38, 509.  doi: 10.1002/cjoc.201900493

    16. [16]

      Zhang, H.; Li, G.; Zhang, K.; Liao, C. Acta Chim. Sinica 2017, 75, 841.
       

    17. [17]

      Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Mater. Today 2019, 27, 43.  doi: 10.1016/j.mattod.2018.10.038

    18. [18]

      Li, J. R.; Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112, 869.  doi: 10.1021/cr200190s

    19. [19]

      Liao, P. Q.; Zhang, W. X.; Zhang, J. P.; Chen, X. M. Nat. Commun. 2015, 6, 8697.  doi: 10.1038/ncomms9697

    20. [20]

      Wu, W.; Li, Z.; Chen, Y.; Li, W. Environ. Sci. Technol. 2019, 53, 3764.  doi: 10.1021/acs.est.9b00408

    21. [21]

      Yang, W.; Liang, H.; Qiao, Z. Acta Chim. Sinica 2018, 76, 785.
       

    22. [22]

      Lin, R. B.; Li, L.; Zhou, H. L.; Wu, H.; He, C.; Li, S.; Krishna, R.; Li, J.; Zhou, W.; Chen, B. Nat. Mater. 2018, 17, 1128.  doi: 10.1038/s41563-018-0206-2

    23. [23]

      Shi, Y.; Liang, B.; Alsalme, A.; Lin, R.-B.; Chen, B. J. Solid State Chem. 2020, 287, 121321.  doi: 10.1016/j.jssc.2020.121321

    24. [24]

      Li, L.; Guo, L.; Pu, S.; Wang, J.; Yang, Q.; Zhang, Z.; Yang, Y.; Ren, Q.; Alnemrat, S.; Bao, Z. Chem. Eng. J. 2019, 358, 446.  doi: 10.1016/j.cej.2018.10.034

    25. [25]

      Mondloch, J. E.; Karagiaridi, O.; Farha, O. K.; Hupp, J. T. CrystEngComm 2013, 15, 9258.  doi: 10.1039/c3ce41232f

    26. [26]

      Bosch, M.; Zhang, M.; Zhou, H.-C. Adv. Chem. 2014, 2014, 1.

    27. [27]

      Wang, C.; Liu, X.; Keser Demir, N.; Chen, J. P.; Li, K. Chem. Soc. Rev. 2016, 45, 5107.  doi: 10.1039/C6CS00362A

    28. [28]

      Saha, D.; Deng, S. J. Colloid Interface Sci. 2010, 348, 615.  doi: 10.1016/j.jcis.2010.04.078

    29. [29]

      Ding, M.; Cai, X.; Jiang, H. L. Chem. Sci. 2019, 10, 10209.  doi: 10.1039/C9SC03916C

    30. [30]

      Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Nat. Rev. Mater. 2016, 1, 1.

    31. [31]

      Valentin, R.; Horga, R.; Bonelli, B.; Garrone, E.; Di Renzo, F.; Quignard, F. Biomacromolecules 2006, 7, 877.  doi: 10.1021/bm050559x

    32. [32]

      Chen, Y.; Shan, B.; Yang, C.; Yang, J.; Li, J.; Mu, B. J. Mater. Chem. A 2018, 6, 9922.  doi: 10.1039/C8TA02845A

    33. [33]

      Nijem, N.; Fürsich, K.; Bluhm, H.; Leone, S. R.; Gilles, M. K. J. Phys. Chem. C 2015, 119, 24781.  doi: 10.1021/acs.jpcc.5b05716

    34. [34]

      Matito-Martos, I.; Martin-Calvo, A.; Ania, C. O.; Parra, J. B.; Vicent-Luna, J. M.; Calero, S. Chem. Eng. J. 2020, 387, 124062.  doi: 10.1016/j.cej.2020.124062

    35. [35]

      Watanabe, T.; Sholl, D. S. J. Chem. Phys. 2010, 133, 094509.  doi: 10.1063/1.3479041

    36. [36]

      Borfecchia, E.; Maurelli, S.; Gianolio, D.; Groppo, E.; Chiesa, M.; Bonino, F.; Lamberti, C. J. Phys. Chem. C 2012, 116, 19839.  doi: 10.1021/jp305756k

    37. [37]

      Li, X. Y.; Li, Z. J.; Li, Y. Z.; Hou, L.; Zhu, Z.; Wang, Y. Y. Inorg. Chem. 2018, 57, 12417.  doi: 10.1021/acs.inorgchem.8b02199

    38. [38]

      Yang, S.; Ramirez-Cuesta, A. J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S. K.; Campbell, S. I.; Tang, C. C.; Schroder, M. Nat. Chem. 2014, 7, 121.

    39. [39]

      Jiang, K.; Zhang, L.; Xia, T.; Yang, Y.; Li, B.; Cui, Y.; Qian, G. Sci. China Mater. 2019, 62, 1315.  doi: 10.1007/s40843-019-9427-5

    40. [40]

      Liu, Y.; Xia, X.; Tan, Y.; Li, S. Acta Chim. Sinica 2020, 78, 250.
       

    41. [41]

      Hao, H. G.; Zhao, Y. F.; Chen, D. M.; Yu, J. M.; Tan, K.; Ma, S.; Chabal, Y.; Zhang, Z. M.; Dou, J. M.; Xiao, Z. H.; Day, G.; Zhou, H. C.; Lu, T. B. Angew. Chem. Int. Ed. 2018, 57, 16067.  doi: 10.1002/anie.201809884

    42. [42]

      Chen, Y.; Zhang, F.; Wang, Y.; Yang, C.; Yang, J.; Li, J. Microporous Mesoporous Mater. 2018, 258, 170.  doi: 10.1016/j.micromeso.2017.09.013

    43. [43]

      Li, Z.; Xiao, Y.; Xue, W.; Yang, Q.; Zhong, C. J. Phys. Chem. C 2015, 119, 3674.  doi: 10.1021/acs.jpcc.5b00019

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(19)
  • Abstract views(759)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return