Citation: Fu Jingru, Ben Teng. Fabrication of a Novel Covalent Organic Framework Membrane and Its Gas Separation Performance[J]. Acta Chimica Sinica, ;2020, 78(8): 805-814. doi: 10.6023/A20040128 shu

Fabrication of a Novel Covalent Organic Framework Membrane and Its Gas Separation Performance

  • Corresponding author: Ben Teng, tben@jlu.edu.cn
  • Received Date: 28 April 2020
    Available Online: 9 June 2020

    Fund Project: the Science and Technology Department of Jilin Province Foundation 20180414009GHthe National Natural Science Foundation of China 21871103"111" Project BP0719036Project supported by the National Natural Science Foundation of China (Nos. 91956108, 21871103), "111" Project (No. BP0719036) and the Science and Technology Department of Jilin Province Foundation (No. 20180414009GH)the National Natural Science Foundation of China 91956108

Figures(14)

  • Herein, we employ 2, 5-dimethoxyterephthalaldehyde (DMTA) containing ether oxygen group in the structure as the construction unit to react with tetra-(4-anilyl)-methane (TAM) through Schiff-based condensation reaction in a Teflon-lined autoclave to synthesize a novel three-dimensional covalent organic framework named DMTA-COF. Furthermore, the condensation reaction was confirmed by Fourier transform infrared spectroscopy (FT-IR). The crystal structure of DMTA-COF was analyzed by the powder X-ray diffraction (PXRD) measurement in conjunction with structural simulation. The morphology, thermal stability, porosity and pore distribution of DMTA-COF were measured by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and N2 adsorption-desorption at 77 K. The high affinity for CO2 adsorption was also confirmed by low pressure CO2 sorption. Considering the relatively small pore size and the strong CO2 adsorption interaction of DMTA-COF due to an abundant of ether oxygen group and imine linkage, we synthesized one continuous supported DMTA-COF membrane for H2/CO2 separation. In our study, the porous Al2O3 support surface was first coated with polyaniline (PANI) and was then further functionalized with aldehyde groups by reaction with DMTA at 150 ℃ for 1 h. Finally, in situ growth of the COF membrane utilizing the covalent linkage yielded a novel continuous DMTA-COF membrane. X-ray diffraction (XRD) result indicated that the DMTA-COF membrane was pure phase and had high crystallinity. From SEM characterization, we could see that the DMTA-COF membrane was compact and well intergrowth and adhered to the support tightly. Gas separation performance results shown that DMTA-COF membrane had a high H2 permeance and selectivity of H2/CO2. For DMTA-COF membrane, the 1:1 binary mixture gas separation factors of H2/CO2 calculated as the gas molar ratios in permeate and retentate side was 8.3 at room temperature and atmospheric pressure. And H2/CO2 separation factor of DMTA-COF membrane exceeded the corresponding Knudsen coefficient (4.7), with H2 permeance of up to 6.3×10-7 mol·m-2·s-1·Pa-1. Because of its outstanding characteristics, the novel DMTA-COF membrane is expected to be widely used in the field of H2 purification and separation.
  • 加载中
    1. [1]

      Koros, W. J.; Zhang, C. Nat. Mater. 2017, 16, 289.  doi: 10.1038/nmat4805

    2. [2]

      Huang, A.-S.; Liang, F.-Y.; Steinbach, F.; Caro. J. J. Membr. Sci. 2010, 350, 5.  doi: 10.1016/j.memsci.2009.12.029

    3. [3]

      Huang, A.-S.; Caro, J. J. Mater. Chem. 2011, 21, 11424.  doi: 10.1039/c1jm11549a

    4. [4]

      Shi, K.-Y.; Chi, Y.-J.; Jin, X.-Q.; Xu, M.; Yuan, F.-L.; Fu, H.-G. Acta Chim. Sinica 2005, 63, 885.
       

    5. [5]

      Huang, A.-S.; Wang, N.-Y.; Kong, C.-L.; Caro, J. Angew. Chem. Int. Ed. 2012, 51, 10551.  doi: 10.1002/anie.201204621

    6. [6]

      Ben, T.; Lu, C.-J.; Pei, C.-Y.; Xu, S.-X.; Qiu, S.-L. Chem. Eur. J. 2012, 18, 10250.  doi: 10.1002/chem.201201574

    7. [7]

      Liu, B.; Tang, L.-X.; Lian, Y.-H.; Li, Z.; Sun, C.-Y.; Chen, G.-J. Acta Chim. Sinica 2013, 71, 920.

    8. [8]

      Guo, H.-L.; Zhu, G.-S.; Hewitt, I. J.; Qiu, S.-L. J. Am. Chem. Soc. 2009, 131, 1646.  doi: 10.1021/ja8074874

    9. [9]

      Budd, P. M.; Msayib, K. J.; Tattershall, C. E.; Ghanem, B. S.; Reynolds, K. J.; McKeown, N. B.; Fritsch, D. J. Membr. Sci. 2005, 251, 263.  doi: 10.1016/j.memsci.2005.01.009

    10. [10]

      Diercks, C. S.; Yaghi, O. M. Science 2017, 355, 6328.

    11. [11]

      Chen, Q.-D.; Tang, J.-J.; Fang, Q.-R. Chem. J. Chin. Univ. 2018, 39, 2357.

    12. [12]

      Huang, N.; Wang, P.; Jiang, D.-L. Nat. Rev. Mater. 2016, 1, 16068.  doi: 10.1038/natrevmats.2016.68

    13. [13]

      Wang, Z.-T.; Li, H.; Yan, S.-C.; Fang, Q.-R. Acta Chim. Sinica 2020, 78, 63.
       

    14. [14]

      Huang, W.; Li, Y.-G. Chin. J. Chem. 2019, 37, 1291.  doi: 10.1002/cjoc.201900375

    15. [15]

      Peng, Z.-K.; Ding, H.-M.; Chen, R.-F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681.
       

    16. [16]

      Dong, G.-X.; Lee, Y. M. J. Mater. Chem. A 2017, 5, 13294.  doi: 10.1039/C7TA04015F

    17. [17]

      Yuan, S.-S.; Li, X.; Zhu, J.-Y.; Zhang, G.; Puyvelde, P. V.; Bruggen, B. V. Chem. Soc. Rev. 2019, 48, 2665.  doi: 10.1039/C8CS00919H

    18. [18]

      Wang, J.; Zhu, J.-Y.; Zhang, Y.-T.; Liu, J.-D.; Bruggen, B. V. Nanoscale 2017, 9, 2942.  doi: 10.1039/C6NR08417F

    19. [19]

      Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.  doi: 10.1039/C2CS35072F

    20. [20]

      Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. J. Am. Chem. Soc. 2011, 133, 11478.  doi: 10.1021/ja204728y

    21. [21]

      Kandambeth, Sharath.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Rahul, B. J. Am. Chem. Soc. 2012, 134, 19524.  doi: 10.1021/ja308278w

    22. [22]

      Zhou, H.-C.; Long, J.-R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.  doi: 10.1021/cr300014x

    23. [23]

      Chung, T. S.; Jiang, L.-Y.; Li, Y.; Kulprathipanja, S. Prog. Polym. Sci. 2007, 32, 483.  doi: 10.1016/j.progpolymsci.2007.01.008

    24. [24]

      Bunck, D. N.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 14952.  doi: 10.1021/ja408243n

    25. [25]

      Liu, X.-H.; Guan, C.-Z.; Ding, S.-Y.; Wang, W.; Yan, H.-Y.; Wang, D.; Wan, L.-J. J. Am. Chem. Soc. 2013, 135, 28, 10470.

    26. [26]

      Dai, W.-Y.; Shao, F.; Szczerbiński, J.; McCaffrey, R.; Zenobi, R.; Jin, Y.-H.; Schlüter, D.; Zhang, W. Angew. Chem., Int. Ed. 2016, 55, 213.  doi: 10.1002/anie.201508473

    27. [27]

      Dey, K.; Pal, M.; Rout, K. C.; Kunjattu-H, S.; Das, A.; Mukherjee, R.; Kharul, U. K.; Baneriee, R. J. Am. Chem. Soc. 2017, 139, 13083.  doi: 10.1021/jacs.7b06640

    28. [28]

      Fu, J.-R.; Das, S.; Xing, G.-L.; Ben, T.; Valtchev, V.; Qiu, S.-L. J. Am. Chem. Soc. 2016, 138, 7673.  doi: 10.1021/jacs.6b03348

    29. [29]

      Fan, H.-W.; Mundstock, A.; Feldhoff, A.; Knebel, A.; Gu, J.-H.; Meng, H.; Caro, J. J. Am. Chem. Soc. 2018, 140, 10094.  doi: 10.1021/jacs.8b05136

    30. [30]

      Fan, H.-W.; Mundstock, A.; Gu, J.-H.; Meng, H.; Caro, J. J. Mater. Chem. A. 2018, 6, 16849.  doi: 10.1039/C8TA05641B

    31. [31]

      Segura, J. L.; Mancheo, M. J.; Zamora, F. Chem. Soc. Rev. 2016, 45, 5635.  doi: 10.1039/C5CS00878F

    32. [32]

      Ma, Y.-X.; Li, Z.-J.; Wei, L.; Ding, S.-Y.; Zhang, Y.-B.; Wang, W. J. Am. Chem. Soc. 2017, 139, 4995.  doi: 10.1021/jacs.7b01097

    33. [33]

      Zhang, Y.-B.; Su, J.; Furukawa, H.; Yun, Y.-F.; Gándara, F.; Duong, A.; Zou, X.-D.; Yaghi, O. M. J. Am. Chem. Soc. 2013, 135, 16336.  doi: 10.1021/ja409033p

    34. [34]

      Bureekaew, S.; Sato, H.; Matsuda, R.; Kubota, Y.; Hirose, R.; Kim, J.; Kato, K.; Takata, M.; Kitagawa, S. Angew. Chem., Int. Ed. 2010, 49, 7660.  doi: 10.1002/anie.201002259

    35. [35]

      Reichenbach, C.; Kalies, G.; Lincke, J.; Lässig, D, ; Krautscheid, H.; Moellmer, J.; Thommes, M. Microporous Mesoporous Mater. 2011, 142, 592.  doi: 10.1016/j.micromeso.2011.01.005

    36. [36]

      Feng, S.-C.; Ren, J.-Z.; Li, H.; Hua, K.-S.; Li, X.-X.; Deng, M.-C. Membr. Sci. Technol. 2013, 33, 53.

    37. [37]

      Lin, H.-Q.; Freeman, B. D. J. Mol. Struct. 2005, 739, 57.  doi: 10.1016/j.molstruc.2004.07.045

    38. [38]

      Lu, H.; Wang, C.; Chen, J.-J.; Ge, R.-L.; Leng, W.-G.; Dong, B.; Huang, J.; Gao, Y.-N. Chem. Commun. 2015, 51, 15562.  doi: 10.1039/C5CC06742A

    39. [39]

      Robeson, L. M. J. Membr. Sci. 2008, 320, 390.  doi: 10.1016/j.memsci.2008.04.030

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    18. [18]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

Metrics
  • PDF Downloads(28)
  • Abstract views(1924)
  • HTML views(480)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return