Citation: Qi Ye, Ren Shuangsong, Che Ying, Ye Junwei, Ning Guiling. Research Progress of Metal-Organic Frameworks Based Antibacterial Materials[J]. Acta Chimica Sinica, ;2020, 78(7): 613-624. doi: 10.6023/A20040126 shu

Research Progress of Metal-Organic Frameworks Based Antibacterial Materials

  • Corresponding author: Ye Junwei, junweiye@dlut.edu.cn Ning Guiling, ninggl@dlut.edu.cn
  • Received Date: 28 April 2020
    Available Online: 28 May 2020

    Fund Project: the National Natural Science Foundation of China U1607101the National Natural Science Foundation of China U1808210the Fundamental Research Funds for the Central Universities DUT20LK37Project supported by the National Natural Science Foundation of China (Nos. U1808210, U1607101) and the Fundamental Research Funds for the Central Universities (No. DUT20LK37)

Figures(5)

  • With the accelerating process of industrialization and urbanization, as well as the increasing proportion of the elderly in the world's population, we are facing more complex health threats related to bacterial infection. While the vast majority of the bacteria in the body are rendered harmless by the protective effects of the immune system, the continued abuse and misuse of antibiotics has accelerated the spread of antibiotic-resistant bacterial strains and has resulted in substantial new challenges with respect to modern-day antibiotic-based treatments. Therefore, intelligent design of new antibacterial modalities to be used for treating human and livestock diseases is an extremely urgent priority for researchers in the fields of chemistry, chemical engineering, materials and biomedical sciences. Toward this end, the most intriguing of the new developments are metal-organic frameworks (MOFs). MOFs are versatile crystalline porous lattices of organic ligands and metal ion/clusters that formed by self-assembly via coordination bonds. Due to their unique characteristics, including relatively straight forward and simple methods for synthesis, large surface areas, novel and diverse structures, and adjustable porosity, MOFs not only play strong roles with respect to novel methods for gas storage and separation, they may also be utilized in unique applications associated with sensors mechanisms and catalysis. These features contribute to our current understanding of MOFs as promising candidates for the development of pharmaceutical and specifically antibacterial applications. In this review, antibacterial mechanisms, and the development of resistance to current antibiotic strategies are summarized and discussed. The main mechanisms by which bacteria show resistance to antibiotics include altered metabolic pathways, regulation of target sites, and inactivation, modification, and/or reduction in the capacity to accumulate antibacterial drugs. We consider recent progress on the development of MOFs, including the use of specific metal centers and ligands, metal nanoparticles, and drug-encapsulation, all of which have important applications with respect to antibacterial activities, and wound healing. Finally, the challenges and prospects of MOF-based antibacterial materials are discussed, including critical findings, which will help toward the development of the next generation antibacterial MOFs for human use.
  • 加载中
    1. [1]

      Tan, L.; Li, J.; Liu, X.; Cui, Z.; Yang, X.; Yeung, K. W. K.; Pan, H.; Zheng, Y.; Wang, X.; Wu, S. Small 2018, 14, 1703197.  doi: 10.1002/smll.201703197

    2. [2]

      Rtimi, S.; Dionysiou, D. D.; Pillai, S. C.; Kiwi, J. Appl. Catal., B 2019, 240, 291.  doi: 10.1016/j.apcatb.2018.07.025

    3. [3]

      Alseth, E. O.; Pursey, E.; Lujan, A. M.; McLeod, I.; Rollie, C.; Westra, E. R. Nature 2019, 574, 549.  doi: 10.1038/s41586-019-1662-9

    4. [4]

      Tang, S.; Zheng, J. Adv. Healthcare Mater. 2018, 7, 1701503.  doi: 10.1002/adhm.201701503

    5. [5]

      Qi, Y.; Ye, J.; Zhang, S.; Tian, Q.; Xu, N.; Tian, P.; Ning, G. J. Alloys Compd. 2019, 782, 780.  doi: 10.1016/j.jallcom.2018.12.111

    6. [6]

      Chai, Z.; Tian, Q.; Ye, J.; Zhang, S.; Wang, G.; Qi, Y.; Che, Y.; Ning, G. J. Mater. Sci. 2020, 55, 4408.  doi: 10.1007/s10853-019-04312-y

    7. [7]

      Ye, J.; Cheng, H.; Li, H.; Yang, Y.; Zhang, S.; Rauf, A.; Zhao, Q.; Ning, G. J. Colloid Interface Sci. 2017, 504, 448.  doi: 10.1016/j.jcis.2017.05.111

    8. [8]

      Peng, K.; Ding, W.; Tu, W.; Hu, J.; Liu, C.; Yang, J. Acta Chim. Sinica 2016, 74, 713.  doi: 10.11862/CJIC.2016.081

    9. [9]

      Hook, A. L.; Chang, C.-Y.; Yang, J.; Atkinson, S.; Langer, R.; Anderson, D. G.; Davies, M. C.; Williams, P.; Alexander, M. R. Adv. Mater. 2013, 25, 2542.  doi: 10.1002/adma.201204936

    10. [10]

      Wang, K.; He, J. Acta Chim. Sinica 2018, 76, 807.
       

    11. [11]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 974.

    12. [12]

      Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem., Int. Ed. 2005, 44, 4670.  doi: 10.1002/anie.200462786

    13. [13]

      Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chin. J. Chem. 2020, 38, 509.  doi: 10.1002/cjoc.201900493

    14. [14]

      Wang, X.; Zhang, Y.; Chang, Z.; Huang, H.; Liu, X.-T.; Xu, J.; Bu, X.-H. Chin. J. Chem. 2019, 37, 871.  doi: 10.1002/cjoc.201900247

    15. [15]

      Schoedel, A.; Li, M.; Li, D.; O'Keeffe, M.; Yaghi, O. M. Chem. Rev. 2016, 116, 12466.  doi: 10.1021/acs.chemrev.6b00346

    16. [16]

      Yaghi, O. M.; Li, H. L.; Davis, C.; Richardson, D.; Groy, T. L. Acc. Chem. Res. 1998, 31, 474.  doi: 10.1021/ar970151f

    17. [17]

      Zeng, J.; Wang, X.; Zhang, X.; Zhuo, R. Acta Chim. Sinica 2019, 77, 1156.
       

    18. [18]

      Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754.  doi: 10.1002/cjoc.201800144

    19. [19]

      Gao, B.; Zhou, J.; Wang, H.; Zhang, G.; He, J.; Xu, Q.; Li, N.; Chen, D.; Li, H.; Lu, J. Chin. J. Chem. 2019, 37, 148.  doi: 10.1002/cjoc.201800440

    20. [20]

      Guo, X.; Chen, X.; Su, D.; Liang, C. Acta Chim. Sinica 2018, 76, 22.  doi: 10.3866/PKU.WHXB201706302

    21. [21]

      Wu, Z.; Shi, Y.; Li, C.; Niu, D.; Chu, Q.; Xiong, W.; Li, X. Acta Chim. Sinica 2019, 77, 758.
       

    22. [22]

      Luo, Y.; Li, J.; Liu, X.; Tan, L.; Cui, Z.; Feng, X.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Zheng, Y.; Yeung, K. W. K.; Yang, C.; Wang, X.; Wu, S. ACS Cent. Sci. 2019, 5, 1591.  doi: 10.1021/acscentsci.9b00639

    23. [23]

      Yang, Y.; Deng, Y.; Huang, J.; Fan, X.; Cheng, C.; Nie, C.; Ma, L.; Zhao, W.; Zhao, C. Adv. Funct. Mater. 2019, 29, 1900143.  doi: 10.1002/adfm.201900143

    24. [24]

      Yao, X.; Zhu, G.; Zhu, P.; Ma, J.; Chen, W.; Liu, Z.; Kong, T. Adv. Funct. Mater. 2020, 30, 1909389.  doi: 10.1002/adfm.201909389

    25. [25]

      Nasrabadi, M.; Ghasemzadeh, M. A.; Monfared, M. R. Z. New J. Chem. 2019, 43, 16033.  doi: 10.1039/C9NJ03216A

    26. [26]

      Chen, M.; Long, Z.; Dong, R.; Wang, L.; Zhang, J.; Li, S.; Zhao, X.; Hou, X.; Shao, H.; Jiang, X. Small 2020, 16, 1906240.  doi: 10.1002/smll.201906240

    27. [27]

      Alexander, F. Br. J. Exp. Pathol. 1929, 10, 226.

    28. [28]

      Lacombe, S.; Rougon-Cardoso, A.; Sherwood, E.; Peeters, N.; Dahlbeck, D.; van Esse, H. P.; Smoker, M.; Rallapalli, G.; Thomma, B. P. H. J.; Staskawicz, B.; Jones, J. D. G.; Zipfel, C. Nat. Biotechnol. 2010, 28, 365.  doi: 10.1038/nbt.1613

    29. [29]

      Jiao, Y.; Zhang, X. Acta Chim. Sinica 2018, 76, 659.  doi: 10.3969/j.issn.0253-2409.2018.06.003

    30. [30]

      Zhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Environ. Sci. Technol. 2015, 49, 6772.  doi: 10.1021/acs.est.5b00729

    31. [31]

      Molton, J. S.; Tambyah, P. A.; Ang, B. S. P.; Ling, M. L.; Fisher, D. A. Clin. Infect. Dis. 2013, 56, 1310.  doi: 10.1093/cid/cit020

    32. [32]

      Magiorakos, A. P.; Srinivasan, A.; Carey, R. B.; Carmeli, Y.; Falagas, M. E.; Giske, C. G.; Harbarth, S.; Hindler, J. F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D. L.; Rice, L. B.; Stelling, J.; Struelens, M. J.; Vatopoulos, A.; Weber, J. T.; Monnet, D. L. Clin. Microbiol. Infect. 2012, 18, 268.  doi: 10.1111/j.1469-0691.2011.03570.x

    33. [33]

      Luria, S. E.; Delbrück, M. Genetics 1943, 28, 491.

    34. [34]

      Long, H.; Miller, S. F.; Strauss, C.; Zhao, C.; Cheng, L.; Ye, Z.; Griffin, K.; Te, R.; Lee, H.; Chen, C.-C.; Lynch, M. PNAS 2016, 113, E2498.  doi: 10.1073/pnas.1601208113

    35. [35]

      Gutierrez, A.; Laureti, L.; Crussard, S.; Abida, H.; Rodriguez-Rojas, A.; Blazquez, J.; Baharoglu, Z.; Mazel, D.; Darfeuille, F.; Vogel, J.; Matic, I. Nat. Commun. 2013, 4, 1610.  doi: 10.1038/ncomms2607

    36. [36]

      Bjedov, I.; Tenaillon, O.; Gerard, B.; Souza, V.; Denamur, E.; Radman, M.; Taddei, F.; Matic, I. Science 2003, 300, 1404.  doi: 10.1126/science.1082240

    37. [37]

      Yun, B.-R.; Malik, A.; Kim, S. B. Gene 2020, 733, 144379.  doi: 10.1016/j.gene.2020.144379

    38. [38]

      Tabashnik, B. E.; Huang, F.; Ghimire, M. N.; Leonard, B. R.; Siegfried, B. D.; Rangasamy, M.; Yang, Y.; Wu, Y.; Gahan, L. J.; Heckel, D. G.; Bravo, A.; Soberon, M. Nat. Biotechnol. 2011, 29, 1128.  doi: 10.1038/nbt.1988

    39. [39]

      Dey, B.; Dey, R. J.; Cheung, L. S.; Pokkali, S.; Guo, H.; Lee, J.-H.; Bishai, W. R. Nat. Med. 2015, 21, 401.  doi: 10.1038/nm.3813

    40. [40]

      Thaker, M. N.; Wang, W.; Spanogiannopoulos, P.; Waglechner, N.; King, A. M.; Medina, R.; Wright, G. D. Nat. Biotechnol. 2013, 31, 922.  doi: 10.1038/nbt.2685

    41. [41]

      Dodd, M. C.; Kohler, H.-P. E.; Von Gunten, U. Environ. Sci. Technol. 2009, 43, 2498.

    42. [42]

      Kim, J.; Pitts, B.; Stewart, P. S.; Camper, A.; Yoon, J. Antimicrob. Agents Chemother. 2008, 52, 1446.  doi: 10.1128/AAC.00054-07

    43. [43]

      Yan, D.; Wu, X.; Pei, J.; Wu, C.; Wang, X.; Zhao, H. Ceram. Int. 2020, 46, 696.  doi: 10.1016/j.ceramint.2019.09.022

    44. [44]

      Hu, X. N.; Zhao, Y. Y.; Hu, Z. J.; Saran, A.; Hou, S.; Wen, T.; Liu, W. Q.; Ji, Y. L.; Jiang, X. Y.; Wu, X. C. Nano Res. 2013, 6, 822.  doi: 10.1007/s12274-013-0360-4

    45. [45]

      Zhu, M.; Li, X.; Ge, L.; Zi, Y.; Qi, M.; Li, Y.; Li, D.; Mu, C. Mater. Sci. Eng., C 2020, 106, 110185.  doi: 10.1016/j.msec.2019.110185

    46. [46]

      Berchel, M.; Gall, T. L.; Denis, C.; Hir, S. L.; Quentel, F.; Elléouet, C.; Montier, T.; Rueff, J.-M.; Salaün, J.-Y.; Haelters, J.-P.; Hix, G. B.; Lehn, P.; Jaffrès, P.-A. New J. Chem. 2011, 35, 1000.  doi: 10.1039/c1nj20202b

    47. [47]

      Lu, X. Y.; Ye, J. W.; Sun, Y.; Bogale, R. F.; Zhao, L. M.; Tian, P.; Ning, G. L. Dalton Trans. 2014, 43, 10104.  doi: 10.1039/c4dt00270a

    48. [48]

      Lu, X. Y.; Ye, J. W.; Zhao, L. M.; Lin, Y.; Ning, G. L. J. Coord. Chem. 2014, 67, 1133.  doi: 10.1080/00958972.2014.910773

    49. [49]

      Rauf, A.; Ye, J. W.; Hao, A. Y.; Zhao, L. Y.; Zhang, S. Q.; Qi, Y.; Shi, L.; Ning, G. L. J. Coord. Chem. 2018, 71, 3266.  doi: 10.1080/00958972.2018.1510122

    50. [50]

      Zhang, S.; Ye, J.; Sun, Y.; Kang, J.; Liu, J.; Wang, Y.; Li, Y.; Zhang, L.; Ning, G. Chem. Eng. J. 2020, 390, 124523.  doi: 10.1016/j.cej.2020.124523

    51. [51]

      Panchal, P.; Paul, D. R.; Sharma, A.; Choudhary, P.; Meena, P.; Nehra, S. P. J. Colloid Interface Sci. 2020, 563, 370.  doi: 10.1016/j.jcis.2019.12.079

    52. [52]

      Abendrot, M.; Checinska, L.; Kusz, J.; Lisowska, K.; Zawadzka, K.; Felczak, A.; Kalinowska-Lis, U. Molecules 2020, 25, 951.  doi: 10.3390/molecules25040951

    53. [53]

      Li, P.; Li, J.; Feng, X.; Li, J.; Hao, Y.; Zhang, J.; Wang, H.; Yin, A.; Zhou, J.; Ma, X.; Wang, B. Nat. Commun. 2019, 10, 2177.  doi: 10.1038/s41467-019-10218-9

    54. [54]

      Mallick, S.; Sharma, S.; Banerjee, M.; Ghosh, S. S.; Chattopadhyay, A.; Paul, A. ACS Appl. Mater. Interfaces 2012, 4, 1313.  doi: 10.1021/am201586w

    55. [55]

      Chen, S.; Tang, F.; Tang, L.; Li, L. ACS Appl. Mater. Interfaces 2017, 9, 20895.  doi: 10.1021/acsami.7b04956

    56. [56]

      Rauf, A.; Ye, J. W.; Zhang, S. Q.; Shi, L.; Akram, M. A.; Ning, G. L. Polyhedron 2019, 166, 130.  doi: 10.1016/j.poly.2019.03.039

    57. [57]

      Han, D.; Han, Y.; Li, J.; Liu, X.; Yeung, K. W. K.; Zheng, Y.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Yuan, X.; Feng, X.; Yang, C.; Wu, S. Appl. Catal., B 2020, 261, 118248.  doi: 10.1016/j.apcatb.2019.118248

    58. [58]

      Lu, X.; Ye, J.; Zhang, D.; Xie, R.; Bogale, R. F.; Sun, Y.; Zhao, L.; Zhao, Q.; Ning, G. J. Inorg. Biochem. 2014, 138, 114.  doi: 10.1016/j.jinorgbio.2014.05.005

    59. [59]

      Liu, Y.; Xu, X.; Xia, Q.; Yuan, G.; He, Q.; Cui, Y. Chem. Commun. 2010, 46, 2608.  doi: 10.1039/b923365b

    60. [60]

      Kirillov, A. M.; Wieczorek, S. W.; Lis, A.; Guedes da Silva, M. F. C.; Florek, M.; Król, J.; Staroniewicz, Z.; Smoleński, P.; Pombeiro, A. J. L. Cryst. Growth Des. 2011, 11, 2711.  doi: 10.1021/cg200571y

    61. [61]

      Akbarzadeh, F.; Motaghi, M.; Chauhan, N. P. S.; Sargazi, G. Heliyon 2020, 6, e03231.

    62. [62]

      Ahmad, N.; Samavati, A.; Nordin, N. A. H. M.; Jaafar, J.; Ismail, A. F.; Malek, N. A. N. N. Sep. Purif. Technol. 2020, 239, 116554.  doi: 10.1016/j.seppur.2020.116554

    63. [63]

      Yang, Y.; Guo, Z.; Huang, W.; Zhang, S.; Huang, J.; Yang, H.; Zhou, Y.; Xu, W.; Gu, S. Appl. Surf. Sci. 2020, 503, 144079.  doi: 10.1016/j.apsusc.2019.144079

    64. [64]

      Qi, Y.; Ye, J.; Ren, S.; Lv, J.; Zhang, S.; Che, Y.; Ning, G. J. Hazard. Mater. 2020, 387, 121687.  doi: 10.1016/j.jhazmat.2019.121687

    65. [65]

      Abednejad, A.; Ghaee, A.; Nourmohammadi, J.; Mehrizi, A. A. Carbohydr. Polym. 2019, 222, 115033.  doi: 10.1016/j.carbpol.2019.115033

    66. [66]

      Majumdar, D.; Das, D.; Sreejith, S. S.; Das, S.; Kumar Biswas, J.; Mondal, M.; Ghosh, D.; Bankura, K.; Mishra, D. Inorg. Chim. Acta 2019, 489, 244.  doi: 10.1016/j.ica.2019.02.022

    67. [67]

      Azad, F. N.; Ghaedi, M.; Dashtian, K.; Hajati, S.; Pezeshkpour, V. Ultrason. Sonochem. 2016, 31, 383.  doi: 10.1016/j.ultsonch.2016.01.024

    68. [68]

      Abbasi, A. R.; Akhbari, K.; Morsali, A. Ultrason. Sonochem. 2012, 19, 846.  doi: 10.1016/j.ultsonch.2011.11.016

    69. [69]

      Zhang, Q.; Yue, C.; Zhang, Y.; Lü, Y.; Hao, Y.; Miao, Y.; Li, J.; Liu, Z. Inorg. Chim. Acta 2018, 473, 112.  doi: 10.1016/j.ica.2017.12.036

    70. [70]

      Usefi, S.; Akhbari, K.; White, J. J. Solid State Chem. 2019, 276, 61.  doi: 10.1016/j.jssc.2019.04.016

    71. [71]

      Abbasloo, F.; Khosravani, S. A.; Ghaedi, M.; Dashtian, K.; Hosseini, E.; Manzouri, L.; Khorramrooz, S. S.; Sharifi, A.; Jannesar, R.; Sadri, F. Ultrason. Sonochem. 2018, 42, 237.  doi: 10.1016/j.ultsonch.2017.11.035

    72. [72]

      Shi, Z.; Zhang, K.; Zada, S.; Zhang, C.; Meng, X.; Yang, Z.; Dong, H. ACS Appl. Mater. Interfaces 2020, 12, 12600.  doi: 10.1021/acsami.0c01467

    73. [73]

      Ni, K.; Luo, T.; Lan, G.; Culbert, A.; Song, Y.; Wu, T.; Jiang, X.; Lin, W. Angew. Chem., Int. Ed. 2020, 59, 1108.  doi: 10.1002/anie.201911429

    74. [74]

      Zheng, X.; Wang, L.; Guan, Y.; Pei, Q.; Jiang, J.; Xie, Z. Biomaterials 2020, 235, 119792.  doi: 10.1016/j.biomaterials.2020.119792

    75. [75]

      Liu, M.; Wang, L.; Zheng, X.; Xie, Z. ACS Appl. Mater. Interfaces 2017, 9, 41512.  doi: 10.1021/acsami.7b15826

    76. [76]

      Engell, R. E.; Lim, S. S. Lancet 2013, 381, S44.

    77. [77]

      Fabrega, J.; Luoma, S. N.; Tyler, C. R.; Galloway, T. S.; Lead, J. R. Environ. Int. 2011, 37, 517.  doi: 10.1016/j.envint.2010.10.012

    78. [78]

      Yan, Z.; Fu, L.; Zuo, X.; Yang, H. Appl. Catal., B 2018, 226, 23.  doi: 10.1016/j.apcatb.2017.12.040

    79. [79]

      Park, C. M.; Chu, K. H.; Heo, J.; Her, N.; Jang, M.; Son, A.; Yoon, Y. J. Hazard. Mater. 2016, 309, 133.  doi: 10.1016/j.jhazmat.2016.02.006

    80. [80]

      Bagheri, N.; Khataee, A.; Hassanzadeh, J.; Habibi, B. J. Hazard. Mater. 2018, 360, 233.  doi: 10.1016/j.jhazmat.2018.08.013

    81. [81]

      Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J.; Farha, O. K. Nat. Rev. Mater. 2016, 1, 15018.  doi: 10.1038/natrevmats.2015.18

    82. [82]

      Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Chem.-Eur. J. 2008, 14, 8456.  doi: 10.1002/chem.200800980

    83. [83]

      Duan, C.; Liu, C.; Meng, X.; Gao, K.; Lu, W.; Zhang, Y.; Dai, L.; Zhao, W.; Xiong, C.; Wang, W.; Liu, Y.; Ni, Y. Carbohydr. Polym. 2020, 230, 115642.  doi: 10.1016/j.carbpol.2019.115642

    84. [84]

      Whitford, C. L.; Stephenson, C. J.; Gomez-Gualdron, D. A.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q.; Stair, P. C. J. Phys. Chem. C 2017, 121, 25079.  doi: 10.1021/acs.jpcc.7b06773

    85. [85]

      Mukoyoshi, M.; Kobayashi, H.; Kusada, K.; Hayashi, M.; Yamada, T.; Maesato, M.; Taylor, J. M.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. Chem. Commun. 2015, 51, 12463.  doi: 10.1039/C5CC04663G

    86. [86]

      Yang, Q.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Angew. Chem., Int. Ed. 2016, 55, 3685.  doi: 10.1002/anie.201510655

    87. [87]

      Guo, Y.-F.; Fang, W.-J.; Fu, J.-R.; Wu, Y.; Zheng, J.; Gao, G.-Q.; Chen, C.; Yan, R.-W.; Huang, S.-G.; Wang, C.-C. Appl. Surf. Sci. 2018, 435, 149.  doi: 10.1016/j.apsusc.2017.11.096

    88. [88]

      Cheon, Y. E.; Suh, M. P. Angew. Chem., Int. Ed. 2009, 48, 2899.  doi: 10.1002/anie.200805494

    89. [89]

      Suh, M. P.; Moon, H. R.; Lee, E. Y.; Jang, S. Y. J. Am. Chem. Soc. 2006, 128, 4710.  doi: 10.1021/ja056963l

    90. [90]

      Shakya, S.; He, Y.; Ren, X.; Guo, T.; Maharjan, A.; Luo, T.; Wang, T.; Dhakhwa, R.; Regmi, B.; Li, H.; Gref, R.; Zhang, J. Small 2019, 15, 1901065.  doi: 10.1002/smll.201901065

    91. [91]

      Gao, X.; Hai, X.; Baigude, H.; Guan, W.; Liu, Z. Sci. Rep. 2016, 6, 37705.  doi: 10.1038/srep37705

    92. [92]

      Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Angew. Chem., Int. Ed. 2006, 45, 5974.  doi: 10.1002/anie.200601878

    93. [93]

      Li, S.; Wang, K.; Shi, Y.; Cui, Y.; Chen, B.; He, B.; Dai, W.; Zhang, H.; Wang, X.; Zhong, C.; Wu, H.; Yang, Q.; Zhang, Q. Adv. Funct. Mater. 2016, 26, 2715.  doi: 10.1002/adfm.201504998

    94. [94]

      Guan, D.; Chen, F.; Qiu, Y.; Jiang, B.; Gong, L.; Lan, L.; Huang, W. Angew. Chem., Int. Ed. 2019, 58, 6678.  doi: 10.1002/anie.201902210

    95. [95]

      Lin, S.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Yeung, K. W. K.; Pan, H.; Wu, S. ACS Appl. Mater. Interfaces 2017, 9, 19248.  doi: 10.1021/acsami.7b04810

    96. [96]

      Chen, H.; Yang, J.; Sun, L.; Zhang, H.; Guo, Y.; Qu, J.; Jiang, W.; Chen, W.; Ji, J.; Yang, Y.-W.; Wang, B. Small 2019, 15, 1903880.  doi: 10.1002/smll.201903880

    97. [97]

      Duan, F.; Feng, X.; Jin, Y.; Liu, D.; Yang, X.; Zhou, G.; Liu, D.; Li, Z.; Liang, X.-J.; Zhang, J. Biomaterials 2017, 144, 155.  doi: 10.1016/j.biomaterials.2017.08.024

    98. [98]

      Mao, D.; Hu, F.; Kenry; Ji, S.; Wu, W.; Ding, D.; Kong, D.; Liu, B. Adv. Mater. 2018, 30, 1706831.  doi: 10.1002/adma.201706831

    99. [99]

      Sava Gallis, D. F.; Butler, K. S.; Agola, J. O.; Pearce, C. J.; McBride, A. A. ACS Appl. Mater. Interfaces 2019, 11, 7782.  doi: 10.1021/acsami.8b21698

    100. [100]

      Vallabani, N. V. S.; Vinu, A.; Singh, S.; Karakoti, A. J. Colloid Interface Sci. 2020, 567, 154.  doi: 10.1016/j.jcis.2020.01.099

    101. [101]

      Xi, J.; Wei, G.; An, L.; Xu, Z.; Xu, Z.; Fan, L.; Gao, L. Nano Lett. 2019, 19, 7645.  doi: 10.1021/acs.nanolett.9b02242

    102. [102]

      Xi, J.; Wei, G.; Wu, Q.; Xu, Z.; Liu, Y.; Han, J.; Fan, L.; Gao, L. Biomater. Sci. 2019, 7, 4131.  doi: 10.1039/C9BM00705A

    103. [103]

      Ye, Y.; Xiao, L.; He, B.; Zhang, Q.; Nie, T.; Yang, X.; Wu, D.; Cheng, H.; Li, P.; Wang, Q. J. Mater. Chem. B 2017, 5, 1518.  doi: 10.1039/C6TB03317B

    104. [104]

      Liu, X.; Yan, Z.; Zhang, Y.; Liu, Z.; Sun, Y.; Ren, J.; Qu, X. ACS Nano 2019, 13, 5222.  doi: 10.1021/acsnano.8b09501

  • 加载中
    1. [1]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    18. [18]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    19. [19]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(107)
  • Abstract views(3533)
  • HTML views(916)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return