Citation: Yin Cen, Wang Zikuan, Liu Dan, Peng Zhantao, Song Huanjun, Zhu Hao, Chen Qiwei, Wu Kai. Adsorption and Self-assembly of meso-tetra(p-methoxyphenyl)-porphyrinatocobalt(II) on Coinage Metal Surfaces[J]. Acta Chimica Sinica, ;2020, 78(7): 695-702. doi: 10.6023/A20040125 shu

Adsorption and Self-assembly of meso-tetra(p-methoxyphenyl)-porphyrinatocobalt(II) on Coinage Metal Surfaces

  • Corresponding author: Chen Qiwei, chenqw@pku.edu.cn Wu Kai, kaiwu@pku.edu.cn
  • Received Date: 28 April 2020
    Available Online: 8 July 2020

    Fund Project: Project supported by the Ministry of Science and Technology (No. 2017M620495) and the National Natural Science Foundation of China (Nos. 21821004, 21932001)the National Natural Science Foundation of China 21821004the National Natural Science Foundation of China 21932001the Ministry of Science and Technology 2017M620495

Figures(9)

  • The adsorption and self-assembly of meso-tetra(p-methoxyphenyl)porphyrinatocobalt(Ⅱ)[Co(TAP)] on Au(111), Ag(111) and Cu(111) have been systematically studied by ultrahigh vacuum low-temperature scanning tunneling microscopy (STM). The atomically flat metal substrate surfaces are prepared by cycled ion sputtering and subsequent annealing at 750 K. Co(TAP) molecules are deposited onto the substrate surfaces via thermal evaporation from a home-made tantalum boat. The as-prepared samples are then annealed to achieve energetically stable self-assembly structures and transferred to the STM chamber for further analyses. All STM measurements are carried out at about 4.4 K. On these metal surfaces, Co(TAP) molecules mainly form two types of two-dimensional molecular assembly structures A and B. Structure A only exists on Au(111) and Ag(111), while Structure B merely appears on Ag(111) and Cu(111). The intermolecular interactions in Structures A and B are due to π-π stacking and hydrogen bonding, respectively. The difference in strength of the molecule-substrate interaction, which induces conformational changes of peripheral p-methoxyphenyl substituent in Co(TAP) on difference substrate, is attributed to govern the formation of different self-assembly structures on the aforementioned surfaces. The substrate surface also has an effect on the formation of the self-assembly structures. At similar coverage, the percentage of dispersed Co(TAP) molecules follow the sequence:Cu(111) > Au(111) > Ag(111). With the coverage increase, the percentage of dispersed Co(TAP) molecules decreases on all metal surfaces employed in this study. Specifically, on Au(111) and Ag(111), the dispersed Co(TAP) molecules disappear at coverages of about 1 ML and 0.1 ML, respectively, while on Cu(111) they survive even at the coverage of about 0.85 ML. In addition, Structure A gradually dominates on Au(111). On Cu(111), Structure B only occupies half of the surface structures even at nearly saturated coverage. The ratio of Structures A to B almost retains over the whole coverage range on Ag(111). Thermal annealing of the molecule-covered Ag(111) substrate helps the transformation from Structure B to A, and the elimination of the structural domain boundaries as well.
  • 加载中
    1. [1]

      Xing, L. B.; Peng, Z. T.; Li, W. T.; Wu, K. Acc. Chem. Res. 2019, 52, 1048.  doi: 10.1021/acs.accounts.9b00002

    2. [2]

      Liang, H. L.; He, Y.; Ye, Y. C.; Xu, X. G.; Cheng, F.; Sun, W.; Shao, X.; Wang, Y. F.; Li, J. L.; Wu, K. Coord. Chem. Rev. 2009, 253, 2959.  doi: 10.1016/j.ccr.2009.07.028

    3. [3]

      Chen, H. R.; Zhu, H.; Huang, Z. C.; Rong, W. H.; Wu, K. Adv. Mater. 2019, 31, 1902080.  doi: 10.1002/adma.201902080

    4. [4]

      Zhou, X.; Dai, J. X.; Wu, K. Phys. Chem. Chem. Phys. 2017, 19, 31531.  doi: 10.1039/C7CP06177C

    5. [5]

      Berner, S.; Biela, S.; Ledung, G.; Gogoll, A.; Bäckvall, J. E.; Puglia, C.; Oscarsson, S. J. Catal. 2006, 244, 86.  doi: 10.1016/j.jcat.2006.08.017

    6. [6]

      Chugreev, A. L.; Misurkin, I. A. Theo. Exp. Chem. 1989, 24, 388.  doi: 10.1007/BF00535111

    7. [7]

      Pereira, C. F.; Figueira, F.; Mendes, R. F.; Rocha, J.; Hupp, J. T.; Farha, O. K.; Simões, M. M. Q.; Tomé, J. P. C.; Paz, F. A. A. Inorg. Chem. 2018, 57, 3855.  doi: 10.1021/acs.inorgchem.7b03214

    8. [8]

      Zhao, Y. L.; Wang, B. Acta Phys.-Chim. Sin. 2018, 34, 1312(in Chinese).  doi: 10.3866/PKU.WHXB201803011

    9. [9]

      Shiraishi, M.; Ikoma, T. Solid State Phenom. 2011, 189, 3336.

    10. [10]

      Huang, Z. C.; Zhang, Y. J.; He, Y.; Song, H. J.; Yin, C.; Wu, K. Chem. Soc. Rev. 2017, 46, 1955.  doi: 10.1039/C6CS00891G

    11. [11]

      Walch, H.; Dienstmaier, J.; Eder, G.; Gutzler, R.; Schlögl, S.; Sirtl, T.; Das, K.; Schmittel, M.; Lackinger, M. J. Am. Chem. Soc. 2011, 133, 7909.  doi: 10.1021/ja200661s

    12. [12]

      Heim, D.; Ecija, D.; Seufert, K.; Auwärter, W.; Aurisicchio, C.; Fabbro, C.; Bonifazi, D.; Barth, J. V. J. Am. Chem. Soc. 2010, 132, 6783.  doi: 10.1021/ja1010527

    13. [13]

      Olson, J. M. Biochim. Biophys. Acta 1980, 594, 33.  doi: 10.1016/0304-4173(80)90012-9

    14. [14]

      Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Chem. Rev. 2004, 35, 561.

    15. [15]

      Castrucci, P.; Tombolini, F.; Scarselli, M.; Bini, S.; Crescenzi, M. D.; Diociaiuti, M.; Casciardi, S.; Khakani, M. A. E.; Rosei, F. Phys. Rev. B 2007, 75, 035420  doi: 10.1103/PhysRevB.75.035420

    16. [16]

      Greef, T. F. A. D.; Smulders, M. M. J.; Wolffs, M.; Schenning, A. P. H. J.; Sijbesma, R. P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687.  doi: 10.1021/cr900181u

    17. [17]

      Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.  doi: 10.1126/science.1209688

    18. [18]

      Li, C.; James, L.; Lei, B.; Fan, W.; Zhang, D. H.; Han, J.; Meyyappan, M.; Thompson, M.; Zhou, C. W. J. Phys. Chem. B 2004, 108, 9646.  doi: 10.1021/jp0498421

    19. [19]

      Liu, Z.; Bocian, D. F. Science 2003, 302, 1543.  doi: 10.1126/science.1090677

    20. [20]

      Bhyrappa, P.; Young, J. K.; Moore, J. S.; Suslick, K. S. J. Am. Chem. Soc. 1996, 118, 5708.  doi: 10.1021/ja953474k

    21. [21]

      Drain, C. M.; Varotto, A.; Radivojevic, I. Chem. Rev. 2009, 109, 1630.  doi: 10.1021/cr8002483

    22. [22]

      Wang, Y. F.; Zhang, X. R.; Ye, Y. C.; Liang, D. J.; Wang, Y.; Wu, K. Acta Phys.-Chim. Sin. 2010, 26, 933.

    23. [23]

      Browne, W. R.; Feringa, B. L. Nat. Nanotech. 2006, 1, 25.

    24. [24]

      Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.  doi: 10.1126/science.1962191

    25. [25]

      Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L.; Mullen, K.; Fasel, R. Nature 2010, 466, 470.  doi: 10.1038/nature09211

    26. [26]

      Chabinyc, M. L.; Holmlin, R. E.; Haag, R.; Chen, X.; Ismagilov, R. F.; Rampi, M. A.; Whitesides, G. M. In Molecular Electronics with a Metal-Insulator-Metal Junction Based on Self-Assembled Monolayers, ACS Symposium Series, Ed.: Liberman, M., ACS Publications, Washington, USA, 2003, pp. 11730~11736.

    27. [27]

      Fendt, L. A.; Stöhr, M.; Wintjes, N.; Enache, M.; Jung, T. A.; Diederich, F. Chem. Eur. J. 2009, 15, 11139.  doi: 10.1002/chem.200901502

    28. [28]

      Heim, D.; Seufert, K.; Auwärter, W.; Aurisicchio, C.; Fabbro, C.; Bonifazi, D.; Barth, J. V. Nano Lett. 2010, 10, 122.  doi: 10.1021/nl9029994

    29. [29]

      Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; Hecht, S. Nat. Nanotech. 2007, 2, 687.

    30. [30]

      Otsuki, J. Coord. Chem. Rev. 2010, 254, 2311.  doi: 10.1016/j.ccr.2009.12.038

    31. [31]

      Barth, J. V. Annu. Rev. Phys. Chem. 2007, 58, 375.  doi: 10.1146/annurev.physchem.56.092503.141259

    32. [32]

      Zhang, Y. H.; She, Y. B.; Zhong, R. G.; Zhou, X. T.; Ji, H. B. Acta Chim. Sinica 2004, 62, 2228(in Chinese).  doi: 10.3321/j.issn:0567-7351.2004.22.005

    33. [33]

      Li, Y.; Wayland, B. B. Chem. Commun. 2003, 9, 1594.

    34. [34]

      Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001, 101, 3689.  doi: 10.1021/cr9901182

    35. [35]

      Lena, F. D.; Matyjaszewski, K. Prog. Polym. Sci. 2010, 35, 959.  doi: 10.1016/j.progpolymsci.2010.05.001

    36. [36]

      Wayland, B. B.; Basickes, L.; Shakti Mukerjee, A.; Wei, M.; Fryd, M. Macromolecules 1997, 116, 8109.

    37. [37]

      Lu, Z.; Fryd, M.; Wayland, B. B. Macromolecules 2004, 37, 2686.  doi: 10.1021/ma035924w

    38. [38]

      Wayland, B. B.; Peng, C. H.; Fu, X.; Lu, Z.; Fryd, M. Macromolecules 2006, 39, 8219.  doi: 10.1021/ma061643n

    39. [39]

      Peng, C. H.; Fryd, M.; Wayland, B. B. Macromolecules 2007, 40, 6814.  doi: 10.1021/ma070836n

    40. [40]

      Peng, C. H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B. Macromolecules 1994, 41, 2368.

    41. [41]

      Li, S.; De, B. B.; Peng, C. H.; Fryd, M.; Wayland, B. B. J. Am. Chem. Soc. 2008, 130, 13373.  doi: 10.1021/ja804010h

    42. [42]

      Zhao, Y.; Yu, M.; Zhang, S.; Liu, Y.; Fu, X. Macromolecules 2014, 47, 6238.  doi: 10.1021/ma5014385

    43. [43]

      Brede, J.; Linares, M.; Kuck, S.; Schwöbel, J.; Scarfato, A.; Chang, S. H.; Hoffmann, G.; Wiesendanger, R.; Lensen, R.; Kouwer, P. H. Nanotechnology 2009, 20, 275602.  doi: 10.1088/0957-4484/20/27/275602

    44. [44]

      Buchner, F.; Kellner, I.; Hieringer, W.; Görling, A.; Steinrück, H. P.; Marbach, H. Phys. Chem. Chem. Phys. 2010, 12, 13082.  doi: 10.1039/c004551a

    45. [45]

      Rojas, G.; Simpson, S.; Chen, X. M.; Kunkel, D. A.; Xiao, J.; Dowben, P. A.; Zurek, E.; Enders, A. Phys. Chem. Chem. Phys. 2012, 14, 4971.  doi: 10.1039/c2cp40254h

    46. [46]

      Auwärter, W.; Klappenberger, F.; Weberbargioni, A.; Schiffrin, A.; Strunskus, T.; Wöll, C.; Pennec, Y.; Riemann, A.; Barth, J. V. J. Am. Chem. Soc. 2007, 129, 11279.  doi: 10.1021/ja071572n

    47. [47]

      Auwärter, W.; Seufert, K.; Klappenberger, F.; Reichert, J.; Weberbargioni, A.; Verdini, A.; Cvetko, D.; Dell'Angela, M.; Floreano, L.; Cossaro, A Phys. Rev. B 2010, 81, 136.

    48. [48]

      Snegaroff, K.; Tan, T. N.; Marquise, N.; Halauko, Y. S.; Harford, P. J.; Roisnel, T.; Matulis, V. E.; Ivashkevich, O. A.; Chevallier, F.; Wheatley, A. E. H. Chem. Eur. J. 2011, 17, 13284.  doi: 10.1002/chem.201101993

    49. [49]

      Rojas, G.; Simpson, S.; Chen, X.; Kunkel, D. A.; Nitz, J.; Xiao, J.; Dowben, P. A.; Zurek, E.; Enders, A. Phys. Chem. Chem. Phys. 2012, 14, 4971.  doi: 10.1039/c2cp40254h

    50. [50]

      Rojas, G.; Chen, X.; Kunkel, D.; Bode, M.; Enders, A. Langmuir 2011, 27, 14267.  doi: 10.1021/la203389d

    51. [51]

      Czoschke, P.; Hong, H.; Basile, L.; Chiang, T. C. Phys. Rev. B 2005, 72, 2071.

    52. [52]

      Seufert, K.; Bocquet, M.-L.; Auwärter, W.; Weber-Bargioni A.; Reichert J.; Lorente, N.; Barth, J. V. Nat. Chem. 2011, 3, 114.  doi: 10.1038/nchem.956

    53. [53]

      Li, J.; Zhang, B. L.; Wang, E. K. Acta Chim. Sinica 1994, 52, 646(in Chinese).  doi: 10.3321/j.issn:0251-0790.1994.05.004

    54. [54]

      Haynes, W. M., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida, USA, 2014, Section 12, pp. 15~18.

    55. [55]

      Huang, Z. C.; Dai, Y. Z.; Wen, X. J.; Liu, D.; Lin, Y. X.; Xu, Z.; Pei, J.; Wu, K. Acta Phys.-Chim. Sin. 2020, 36, 1907043.  doi: 10.3866/PKU.WHXB201907043

    56. [56]

      Ye, X. Y.; Li, Z.-H.; Wang, W. M.; Fan, K. N.; Xu, W.; Hua, Z. Y. Chem. Phys. Lett. 2004, 397, 56.  doi: 10.1016/j.cplett.2004.07.115

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    12. [12]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    13. [13]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    20. [20]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

Metrics
  • PDF Downloads(10)
  • Abstract views(906)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return