Citation: Yin Cen, Wang Zikuan, Liu Dan, Peng Zhantao, Song Huanjun, Zhu Hao, Chen Qiwei, Wu Kai. Adsorption and Self-assembly of meso-tetra(p-methoxyphenyl)-porphyrinatocobalt(II) on Coinage Metal Surfaces[J]. Acta Chimica Sinica, ;2020, 78(7): 695-702. doi: 10.6023/A20040125 shu

Adsorption and Self-assembly of meso-tetra(p-methoxyphenyl)-porphyrinatocobalt(II) on Coinage Metal Surfaces

  • Corresponding author: Chen Qiwei, chenqw@pku.edu.cn Wu Kai, kaiwu@pku.edu.cn
  • Received Date: 28 April 2020
    Available Online: 8 July 2020

    Fund Project: Project supported by the Ministry of Science and Technology (No. 2017M620495) and the National Natural Science Foundation of China (Nos. 21821004, 21932001)the National Natural Science Foundation of China 21821004the National Natural Science Foundation of China 21932001the Ministry of Science and Technology 2017M620495

Figures(9)

  • The adsorption and self-assembly of meso-tetra(p-methoxyphenyl)porphyrinatocobalt(Ⅱ)[Co(TAP)] on Au(111), Ag(111) and Cu(111) have been systematically studied by ultrahigh vacuum low-temperature scanning tunneling microscopy (STM). The atomically flat metal substrate surfaces are prepared by cycled ion sputtering and subsequent annealing at 750 K. Co(TAP) molecules are deposited onto the substrate surfaces via thermal evaporation from a home-made tantalum boat. The as-prepared samples are then annealed to achieve energetically stable self-assembly structures and transferred to the STM chamber for further analyses. All STM measurements are carried out at about 4.4 K. On these metal surfaces, Co(TAP) molecules mainly form two types of two-dimensional molecular assembly structures A and B. Structure A only exists on Au(111) and Ag(111), while Structure B merely appears on Ag(111) and Cu(111). The intermolecular interactions in Structures A and B are due to π-π stacking and hydrogen bonding, respectively. The difference in strength of the molecule-substrate interaction, which induces conformational changes of peripheral p-methoxyphenyl substituent in Co(TAP) on difference substrate, is attributed to govern the formation of different self-assembly structures on the aforementioned surfaces. The substrate surface also has an effect on the formation of the self-assembly structures. At similar coverage, the percentage of dispersed Co(TAP) molecules follow the sequence:Cu(111) > Au(111) > Ag(111). With the coverage increase, the percentage of dispersed Co(TAP) molecules decreases on all metal surfaces employed in this study. Specifically, on Au(111) and Ag(111), the dispersed Co(TAP) molecules disappear at coverages of about 1 ML and 0.1 ML, respectively, while on Cu(111) they survive even at the coverage of about 0.85 ML. In addition, Structure A gradually dominates on Au(111). On Cu(111), Structure B only occupies half of the surface structures even at nearly saturated coverage. The ratio of Structures A to B almost retains over the whole coverage range on Ag(111). Thermal annealing of the molecule-covered Ag(111) substrate helps the transformation from Structure B to A, and the elimination of the structural domain boundaries as well.
  • 加载中
    1. [1]

      Xing, L. B.; Peng, Z. T.; Li, W. T.; Wu, K. Acc. Chem. Res. 2019, 52, 1048.  doi: 10.1021/acs.accounts.9b00002

    2. [2]

      Liang, H. L.; He, Y.; Ye, Y. C.; Xu, X. G.; Cheng, F.; Sun, W.; Shao, X.; Wang, Y. F.; Li, J. L.; Wu, K. Coord. Chem. Rev. 2009, 253, 2959.  doi: 10.1016/j.ccr.2009.07.028

    3. [3]

      Chen, H. R.; Zhu, H.; Huang, Z. C.; Rong, W. H.; Wu, K. Adv. Mater. 2019, 31, 1902080.  doi: 10.1002/adma.201902080

    4. [4]

      Zhou, X.; Dai, J. X.; Wu, K. Phys. Chem. Chem. Phys. 2017, 19, 31531.  doi: 10.1039/C7CP06177C

    5. [5]

      Berner, S.; Biela, S.; Ledung, G.; Gogoll, A.; Bäckvall, J. E.; Puglia, C.; Oscarsson, S. J. Catal. 2006, 244, 86.  doi: 10.1016/j.jcat.2006.08.017

    6. [6]

      Chugreev, A. L.; Misurkin, I. A. Theo. Exp. Chem. 1989, 24, 388.  doi: 10.1007/BF00535111

    7. [7]

      Pereira, C. F.; Figueira, F.; Mendes, R. F.; Rocha, J.; Hupp, J. T.; Farha, O. K.; Simões, M. M. Q.; Tomé, J. P. C.; Paz, F. A. A. Inorg. Chem. 2018, 57, 3855.  doi: 10.1021/acs.inorgchem.7b03214

    8. [8]

      Zhao, Y. L.; Wang, B. Acta Phys.-Chim. Sin. 2018, 34, 1312(in Chinese).  doi: 10.3866/PKU.WHXB201803011

    9. [9]

      Shiraishi, M.; Ikoma, T. Solid State Phenom. 2011, 189, 3336.

    10. [10]

      Huang, Z. C.; Zhang, Y. J.; He, Y.; Song, H. J.; Yin, C.; Wu, K. Chem. Soc. Rev. 2017, 46, 1955.  doi: 10.1039/C6CS00891G

    11. [11]

      Walch, H.; Dienstmaier, J.; Eder, G.; Gutzler, R.; Schlögl, S.; Sirtl, T.; Das, K.; Schmittel, M.; Lackinger, M. J. Am. Chem. Soc. 2011, 133, 7909.  doi: 10.1021/ja200661s

    12. [12]

      Heim, D.; Ecija, D.; Seufert, K.; Auwärter, W.; Aurisicchio, C.; Fabbro, C.; Bonifazi, D.; Barth, J. V. J. Am. Chem. Soc. 2010, 132, 6783.  doi: 10.1021/ja1010527

    13. [13]

      Olson, J. M. Biochim. Biophys. Acta 1980, 594, 33.  doi: 10.1016/0304-4173(80)90012-9

    14. [14]

      Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Chem. Rev. 2004, 35, 561.

    15. [15]

      Castrucci, P.; Tombolini, F.; Scarselli, M.; Bini, S.; Crescenzi, M. D.; Diociaiuti, M.; Casciardi, S.; Khakani, M. A. E.; Rosei, F. Phys. Rev. B 2007, 75, 035420  doi: 10.1103/PhysRevB.75.035420

    16. [16]

      Greef, T. F. A. D.; Smulders, M. M. J.; Wolffs, M.; Schenning, A. P. H. J.; Sijbesma, R. P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687.  doi: 10.1021/cr900181u

    17. [17]

      Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.  doi: 10.1126/science.1209688

    18. [18]

      Li, C.; James, L.; Lei, B.; Fan, W.; Zhang, D. H.; Han, J.; Meyyappan, M.; Thompson, M.; Zhou, C. W. J. Phys. Chem. B 2004, 108, 9646.  doi: 10.1021/jp0498421

    19. [19]

      Liu, Z.; Bocian, D. F. Science 2003, 302, 1543.  doi: 10.1126/science.1090677

    20. [20]

      Bhyrappa, P.; Young, J. K.; Moore, J. S.; Suslick, K. S. J. Am. Chem. Soc. 1996, 118, 5708.  doi: 10.1021/ja953474k

    21. [21]

      Drain, C. M.; Varotto, A.; Radivojevic, I. Chem. Rev. 2009, 109, 1630.  doi: 10.1021/cr8002483

    22. [22]

      Wang, Y. F.; Zhang, X. R.; Ye, Y. C.; Liang, D. J.; Wang, Y.; Wu, K. Acta Phys.-Chim. Sin. 2010, 26, 933.

    23. [23]

      Browne, W. R.; Feringa, B. L. Nat. Nanotech. 2006, 1, 25.

    24. [24]

      Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.  doi: 10.1126/science.1962191

    25. [25]

      Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L.; Mullen, K.; Fasel, R. Nature 2010, 466, 470.  doi: 10.1038/nature09211

    26. [26]

      Chabinyc, M. L.; Holmlin, R. E.; Haag, R.; Chen, X.; Ismagilov, R. F.; Rampi, M. A.; Whitesides, G. M. In Molecular Electronics with a Metal-Insulator-Metal Junction Based on Self-Assembled Monolayers, ACS Symposium Series, Ed.: Liberman, M., ACS Publications, Washington, USA, 2003, pp. 11730~11736.

    27. [27]

      Fendt, L. A.; Stöhr, M.; Wintjes, N.; Enache, M.; Jung, T. A.; Diederich, F. Chem. Eur. J. 2009, 15, 11139.  doi: 10.1002/chem.200901502

    28. [28]

      Heim, D.; Seufert, K.; Auwärter, W.; Aurisicchio, C.; Fabbro, C.; Bonifazi, D.; Barth, J. V. Nano Lett. 2010, 10, 122.  doi: 10.1021/nl9029994

    29. [29]

      Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; Hecht, S. Nat. Nanotech. 2007, 2, 687.

    30. [30]

      Otsuki, J. Coord. Chem. Rev. 2010, 254, 2311.  doi: 10.1016/j.ccr.2009.12.038

    31. [31]

      Barth, J. V. Annu. Rev. Phys. Chem. 2007, 58, 375.  doi: 10.1146/annurev.physchem.56.092503.141259

    32. [32]

      Zhang, Y. H.; She, Y. B.; Zhong, R. G.; Zhou, X. T.; Ji, H. B. Acta Chim. Sinica 2004, 62, 2228(in Chinese).  doi: 10.3321/j.issn:0567-7351.2004.22.005

    33. [33]

      Li, Y.; Wayland, B. B. Chem. Commun. 2003, 9, 1594.

    34. [34]

      Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001, 101, 3689.  doi: 10.1021/cr9901182

    35. [35]

      Lena, F. D.; Matyjaszewski, K. Prog. Polym. Sci. 2010, 35, 959.  doi: 10.1016/j.progpolymsci.2010.05.001

    36. [36]

      Wayland, B. B.; Basickes, L.; Shakti Mukerjee, A.; Wei, M.; Fryd, M. Macromolecules 1997, 116, 8109.

    37. [37]

      Lu, Z.; Fryd, M.; Wayland, B. B. Macromolecules 2004, 37, 2686.  doi: 10.1021/ma035924w

    38. [38]

      Wayland, B. B.; Peng, C. H.; Fu, X.; Lu, Z.; Fryd, M. Macromolecules 2006, 39, 8219.  doi: 10.1021/ma061643n

    39. [39]

      Peng, C. H.; Fryd, M.; Wayland, B. B. Macromolecules 2007, 40, 6814.  doi: 10.1021/ma070836n

    40. [40]

      Peng, C. H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B. Macromolecules 1994, 41, 2368.

    41. [41]

      Li, S.; De, B. B.; Peng, C. H.; Fryd, M.; Wayland, B. B. J. Am. Chem. Soc. 2008, 130, 13373.  doi: 10.1021/ja804010h

    42. [42]

      Zhao, Y.; Yu, M.; Zhang, S.; Liu, Y.; Fu, X. Macromolecules 2014, 47, 6238.  doi: 10.1021/ma5014385

    43. [43]

      Brede, J.; Linares, M.; Kuck, S.; Schwöbel, J.; Scarfato, A.; Chang, S. H.; Hoffmann, G.; Wiesendanger, R.; Lensen, R.; Kouwer, P. H. Nanotechnology 2009, 20, 275602.  doi: 10.1088/0957-4484/20/27/275602

    44. [44]

      Buchner, F.; Kellner, I.; Hieringer, W.; Görling, A.; Steinrück, H. P.; Marbach, H. Phys. Chem. Chem. Phys. 2010, 12, 13082.  doi: 10.1039/c004551a

    45. [45]

      Rojas, G.; Simpson, S.; Chen, X. M.; Kunkel, D. A.; Xiao, J.; Dowben, P. A.; Zurek, E.; Enders, A. Phys. Chem. Chem. Phys. 2012, 14, 4971.  doi: 10.1039/c2cp40254h

    46. [46]

      Auwärter, W.; Klappenberger, F.; Weberbargioni, A.; Schiffrin, A.; Strunskus, T.; Wöll, C.; Pennec, Y.; Riemann, A.; Barth, J. V. J. Am. Chem. Soc. 2007, 129, 11279.  doi: 10.1021/ja071572n

    47. [47]

      Auwärter, W.; Seufert, K.; Klappenberger, F.; Reichert, J.; Weberbargioni, A.; Verdini, A.; Cvetko, D.; Dell'Angela, M.; Floreano, L.; Cossaro, A Phys. Rev. B 2010, 81, 136.

    48. [48]

      Snegaroff, K.; Tan, T. N.; Marquise, N.; Halauko, Y. S.; Harford, P. J.; Roisnel, T.; Matulis, V. E.; Ivashkevich, O. A.; Chevallier, F.; Wheatley, A. E. H. Chem. Eur. J. 2011, 17, 13284.  doi: 10.1002/chem.201101993

    49. [49]

      Rojas, G.; Simpson, S.; Chen, X.; Kunkel, D. A.; Nitz, J.; Xiao, J.; Dowben, P. A.; Zurek, E.; Enders, A. Phys. Chem. Chem. Phys. 2012, 14, 4971.  doi: 10.1039/c2cp40254h

    50. [50]

      Rojas, G.; Chen, X.; Kunkel, D.; Bode, M.; Enders, A. Langmuir 2011, 27, 14267.  doi: 10.1021/la203389d

    51. [51]

      Czoschke, P.; Hong, H.; Basile, L.; Chiang, T. C. Phys. Rev. B 2005, 72, 2071.

    52. [52]

      Seufert, K.; Bocquet, M.-L.; Auwärter, W.; Weber-Bargioni A.; Reichert J.; Lorente, N.; Barth, J. V. Nat. Chem. 2011, 3, 114.  doi: 10.1038/nchem.956

    53. [53]

      Li, J.; Zhang, B. L.; Wang, E. K. Acta Chim. Sinica 1994, 52, 646(in Chinese).  doi: 10.3321/j.issn:0251-0790.1994.05.004

    54. [54]

      Haynes, W. M., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida, USA, 2014, Section 12, pp. 15~18.

    55. [55]

      Huang, Z. C.; Dai, Y. Z.; Wen, X. J.; Liu, D.; Lin, Y. X.; Xu, Z.; Pei, J.; Wu, K. Acta Phys.-Chim. Sin. 2020, 36, 1907043.  doi: 10.3866/PKU.WHXB201907043

    56. [56]

      Ye, X. Y.; Li, Z.-H.; Wang, W. M.; Fan, K. N.; Xu, W.; Hua, Z. Y. Chem. Phys. Lett. 2004, 397, 56.  doi: 10.1016/j.cplett.2004.07.115

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    7. [7]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    8. [8]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    11. [11]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    18. [18]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    19. [19]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    20. [20]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

Metrics
  • PDF Downloads(8)
  • Abstract views(804)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return